
SIGN LANGUAGE RECOGNITION USING LANDMARK

DETECTION, GRU and LSTM

Subhalaxmi Chakraborty

Department of Computer

Science University of

Engineering & Management

Kolkata, Inida

subhalaxmi2008@gmail.com

Soumadeep Sarkar

Department of Computer Science

University of Engineering &

Management

Kolkata, Inida

soumadeepsarkar1@gmail.com

Prayosi Paul

Department of Computer

Science University of

Engineering & Management

Kolkata, India

prayosi0409@gmail.com

Suparna Bhattacharjee

Department of Computer Science

University of Engineering &

Management

Kolkata, India

suparna.bhattacharjee99@gmail.com

Arindam Chakraborty

Department of Computer Science

University of Engineering &

Management

Kolkata, India

arindamchakraborty1012@gmail.com

Abstract— Speech impairment is a kind of disability, affects

individual’s ability to communicate with each other. People with

this problem use sign language for their communication.

Though communication through sign language has been taken

care of, there exists communication gap between signed and

non-signed people. To overcome this type of complexity

researchers are trying to develop systems using deep learning

approach. The main objective of this paper is subject to

implement a vision-based application that offers translation of

sign language to voice message and text to reduce the gap

between two kinds of people mentioned above. The proposed

model extracts temporal and spatial features after taking video

sequences. To extract the spatial features, MediaPipe Holistic

has been used that consists of several solutions for the detecting

face, had and pose landmarks. Different kind of RNN

(Recurrent Neural Network) like LSTM (Long Short-Term

Memory) and GRU (Gated Recurrent Unit) have been used is to

train on temporal features. By using both models and American

Signed Language, 99% accuracy has been achieved. The

experimental result shows that the recognition method with

MediaPipe Holistic followed by GRU or LSTM can achieve a

high recognition rate that meets the need of a Sign Language

Recognition system that on the real-time basis. Based on the

expectation, this analysis will facilitate creation of intelligent-

based Sign Language Recognition systems and knowledge

accumulation and provide direction to guide to the correct path.

Keywords— Sign Language Recognition, MediaPipe, landmark

detection, Recurrent Neural Network, Long Short-Term Memory,

Gated Recurrent Unit (Key words)

I. INTRODUCTION

Sign language is an essential means of communication for

deaf people. It consists of complex hand shapes, movements,

hand positions, facial expressions, etc. People with speech and

hearing disabilities use sign language as a nonverbal

communication tool to express their feelings and thoughts to

the rest of the public. However, because these members of the

public find it difficult to understand their expressions, trained

sign language professionals are needed in medical, legal,

educational and training sessions. The demand for these

services has increased in recent years. Services such as video

remote interpretation using high-speed Internet connections

have also been introduced, and while these sign language

interpretation services are easy to use and enjoyable, there are

major restrictions such as access restrictions. To high-speed

Internet and compatible devices.
To address this, a landmark recognition pipeline named

MediaPipe Holistic followed by GRU and LSTM has been
used to recognize gestures in sign language. An American

Sign Language dataset has been recorded and used based on
the available videos that exists on the Internet [1] to train the
model to recognize gestures. The dataset has 10 different
gestures performed multiple times giving us variation in
context and video conditions. For simplicity, the videos are
recorded at a common frame rate and have the same number
of frames. MediaPipe Holistic has been proposed to extract
spatial features and detect landmarks from the video stream
for Sign Language Recognition (SLR). Then by using GRU
(Gated Recurrent Unit) and LSTM (Long Short-Term
Memory), we can extract temporal features from the video
sequences. The performance between LSTM and GRU has
been compared.

OpenCV has been used for capturing and displaying video
frames and performing sign language recognition in real-time.
OpenCV is an available python library that aims at real-time
computer vision. The entire work has been done using Python
programming language.

II. LITERATURE REVIEW

Using deep learning, image processing and also computer
vision, Tanuj Bohra et al. [2] introduced a communication
system that is based on the real-time two way sign language.
Techniques such as skin color segmentation, hand detection,
contour detection and median blur are performed on images
in the dataset for better results. CNN model trained with a
large dataset for 40 classes and was able to predict 17600 test
images in 14 seconds with an accuracy of 99%.

Joyeeta Singha and Karen Das [3] proposed a model for
indian sign language recognition from a live video. The
system comprises three stages. Skin filtering and histogram
matching are pre-processing stages. Eigenvalues and
eigenvectors are being considered for feature extraction stage
and Eigen value weighted euclidean distance for
classification. Twenty people signed dataset that consists 480
images of 24 signs. Model had been tested on 20 videos
having an accuracy of 96.25%.

Real-time Handheld Sign Language Recognition System
by Dr. Gomathi V. and Mariappan H. [4] Contours are used
for face, left and right hand detection by using Fuzzy C-means
and Contour Recognition Algorithm. A fuzzy C-
means algorithm divides the input data into a certain number
of clusters. This model was implemented on a
dataset containing videos recorded by 10 signers
for multiple words and phrases. We were achieving 75%
accuracy.

Subhalaxmi Chakraborty et. al., American Journal of Electronics & Communication, Vol. III (3), 20-26

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 20

Hayani et al. [5] proposed an Arabic Sign Language
recognition system by CNN and inspired by LeNet-5. The
dataset contained 7869 images of Arabic letters and numerals.
Various experiments were performed varying the number of
training sets from 50% to 80%. With having 80% training
dataset 90% accuracy was achieved. The author also
compared the results obtained with machine learning
algorithms such as KNN (k-nearest neighbor) and SVM
(support vector machine) to show the performance of the
system. This model was purely image based and can be
extended to video based recognition.

Ying Xie and Bantupalli [6] worked on an American sign
language recognition system that works on video sequences
based on CNN, LSTM and RNN. A CNN model named
Inception was used for extracting spatial features from frames,
LSTM for longer temporal dependencies, and RNN for
extracting temporal features. Various experiments were
performed with different sample sizes and the dataset consists
of 100 different characters performed by 5 signers and a
maximum accuracy of 91% was achieved. The sequence is
then fed into an LSTM for longer time dependencies. The
outputs of the softmax layer and the max pooling layer are fed
to the RNN architecture to extract temporal features from the
softmax layer.

Rao et al. [9] proposes Indian Sign Language gesture
recognition using CNN. This system works on videos
captured by the mobile phone's front camera. The dataset is
manually created for 200 ISL brands. CNN training is done
with 3 different datasets. In the first batch, the dataset of only
one set is given as input. The second batch has 2 sets of
training data and the third batch has 3 sets of training data. The
average recognition rate of this CNN model is 92.88%.

Real-time recognition and detection of American and

Indian Sign Language using Sift In [10]: The author proposed

a real-time vision-based hand gesture recognition system for

the purpose of human and computer interaction. The system

can recognize 35 different hand gestures given in American

and Indian Sign Language or ASL and ISL faster with various

accuracy. An RGB-to-GRAY segmentation technique was

used to minimize the possibility of false detection. The

authors proposed an improvised Scale Invariant Feature

Transform (SIFT) method and the same was used to extract

the features. The system is modeled using MATLAB. A GUI

model was implemented to design and efficient user-friendly

hand gesture recognition system.

Feature Extraction for Indian and American Sign

Language [11] presented development and recent research of

sign language based on body language and manual

communication. A sign language recognition system

typically goes through three steps of preprocessing, character

extraction, and classification. The classification methods

used for recognition are Neural Network (NN), Support

Vector Machine (SVM), Hidden Markov Models (HMM),

Scale Invariant Feature Transform (SIFT), etc.

The literature review shows that there have been different

approaches to this problem within neural networks itself. The

input feed to the neural networks plays a big role in how the

architecture of the network is shaped, such is a 3DCNN

model would take RGB input along with the depth field. Lu

et al. [12] used a general CNN network to extract spatial

features and used an LSTM to extract sequence features.

Vivek et al. [13] used CNN models with RGB inputs for their

architecture. The authors of [13] worked on American Sign

Language with a custom dataset of their own making. The

architecture in [12] was a pretrained CNN called ResNet

along with a custom LSTM of their 8 designs whereas [13]

used a CNN for stationary hand gestures.

III. PROBLEM STATEMENT AND DATASET DESCRIPTION

Before The objective is to apply Deep Learning
algorithms to detect, in real time, what is being conveyed
using American Sign Language by a signer. The program
should be able to detect static signs as well as signs which
require motion. The input will be obtained from a camera
focused directly on the signer providing a front view. The
sequence of frames will be run processed and the resultant
output will be displayed and played.

The dataset used here was obtained by first recording
videos of ourselves using 10 common words and phrases in
American Sign language, they are "hello", "I love you", "thank
you", "food", "friend", "forget", "again", "me", "want" and
"please". There is also an additional category "no action", in
which the signer shows no signs or the signer is not present in
the frame at all. Each word was individually recorded for a
minimum of 90 times with subtle variations in distance from
the camera and angle of the camera, speed of signing, etc.
These variations were introduced to imitate practical real-time
scenarios. The videos were recorded using a HP-eq0500au
laptop webcam with a resolution of 640 X 480 at 30 frames
per second (fps). For simplicity, the length of each video was
capped at 30 frames.

Each frame of a video was fed into the MediaPipe holistic

pipeline to get face, pose and hand landmarks. Each of the

face and hand landmarks consists of the following:

• x and y: Landmark coordinates normalized to [0.0, 1.0]
by the image width and height respectively.

• z: Represents the landmark depth with the depth at the
midpoint of hips being the origin, and the smaller the
value the closer the landmark is to the camera. The z
magnitude uses the same scale of x.

Each pose landmark consists of a visibility attribute,

which is a value in [0.0, 1.0] indicating the possibility of

landmark being visible in the image.

Graphics and text files were kept separate until text was
edited and formatted. Cannot use hard tabs and limit the use
of hard returns to only one return at the end of a paragraph. No
type of pagination can be added anywhere in the paper. Text
headers - the template will do the number.

For each image, 468 facial landmarks and 33 pose
landmarks were produced. For each hand, 21 landmarks were
produced, assuming that particular hand was in the frame. If a
particular hand was not in the frame, then MediaPipe holistic
does not return any landmarks for that hand. We designed the
programming logic so that if no hand is present in the frame,
we get zeros for the coordinates of each hand landmark. To
feed these landmarks into the LSTM and GRU models, we
wrote an extract keypoints() function that first flattens and
concatenates each category (face, pose, left hand, right hand)
of landmarks into 4 numpy arrays. It then concatenates the

four array numps into one numpy of length 1662 (ie 4✕33 +

3✕468 + 3✕21✕2). All 30 video frames were processed this
way and the resulting numpy fields were concatenated. So we
got a numpy array of shapes (30, 1662) from each video. We

Subhalaxmi Chakraborty et. al., American Journal of Electronics & Communication, Vol. III (3), 20-26

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 21

recorded a total of 1600 videos, of which 90 are in the "no
action" category (meaning no signs are shown), giving us a
shapeless array of shapes (1600, 30, 1662) as our dataset. For
some brands, we had to upload more videos to reduce
overfitting and improve model performance.

IV. PROPOSED SYSTEM

In this section, LSTM and GRU based neural network
architectures have been used for continuous SLR using
landmark detection with MediaPipe Holistic.

Fig. 1: Proposed framework for real-time SLR using landmark recognition

with MediaPipe Holistic, GRU and LSTM.

 The flow diagram of the framework is depicted in Fig. 1,
where a camera is used to acquire the sign inputs. OpenCV
has been used to take input from the camera and for displaying
the video frames. The data is then pre-processed as described
in Chapter 3.

A. MediaPipe Holistic

MediaPipe is a kind of framework for building machine
learning pipelines for video, audio, etc. kind of time series data
and was developed by Google. This cross-platform framework
works on Desktop/Server, Android, iOS and embedded
devices like Raspberry Pi and Jetson Nano. Although
MediaPipe is currently in alpha version 0.7, it works quite well
for our purpose. MediaPipe offers open source and
customizable ML solutions for streaming and live media.
Some of these solutions are Face Detection, Face Mesh, Iris,
Hands, Pose, Holistic and so on.

For the purposes of our project, MediaPipe's Holistic
Solution has been used. The MediaPipe Holistic pipeline
integrates separate models for face, pose and hand
components, each optimized for its specific domain. However,
due to their different specialization, entry into one component
is not suitable for others. For example, the pose estimation
model takes as input a video frame with a lower fixed
resolution (256x256). However, if the hand and face areas
were cropped from this image to fit into their respective
models, the image resolution would be too low for accurate
articulation. MediaPipe Holistic is therefore designed as a

multi-stage pipeline that processes different regions using
region-appropriate image resolutions.

First, the human pose (upper part of Fig. 2) is estimated
using the BlazePose pose detector [7] and the subsequent
landmark model. Then, three regions of interest (ROIs) for
each hand (2x) and face are derived using the derived pose
landmarks, and a re-crop model is used to improve the ROI.
Then, the full-resolution input image is cropped to these
regions of interest, and task-specific face and hand models are
used to estimate their corresponding landmarks. Finally, all
the landmarks are merged with the landmarks from the pose
model to get the full 540+ landmarks.

Fig. 2: MediaPipe Holistic Pipeline Overview

Using MediaPipe saved us a lot of effort which would be
needed to develop our own Convolutional Neural Network
(CNN) for detecting landmarks. We would also have to train
the model on large image datasets or use a pretrained model
and use transfer learning. Mediapipe Holistic is also quite
resilient to variations in background, provided that the
background is not too similar to the color of the skin or of the
dress, and that the shot is well lit. Thus, using MediaPipe
Holistic eased our workflow, concentrate efforts on
developing the appropriate GRU and LSTM based neural
networks to predict the signs from a sequence of frames.

Fig. 3: Landmark detection using MediaPipe Holistic

B. Gated Recurrent Unit (GRU) and Long Short Term

Memxzory (LSTM) Network

GRU and LSTM architectures are variants of Recurrent

Neural Network (RNN) (which is a class of neural networks

which work on sequence data), which are designed to

confront the vanishing gradient problem. The vanishing

gradient problem in RNN makes the RNN unable to retain

contextual-information over a long term. GRU and LSTM

overcome this problem by using memory blocks or cells to

store and access information over long periods of time.

Hence, both GRU and LSTM are very suitable for continuous

Subhalaxmi Chakraborty et. al., American Journal of Electronics & Communication, Vol. III (3), 20-26

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 22

recognition tasks, which demand the use of long-term

contextual information [8].

GRU uses two gates, an update gate and a reset gate,

while LSTM uses an update gate, a forget gate and an

output gate. LSTM is slightly more powerful than GRU,

however GRU is a bit easier to train as it has less parameters

than LSTM. GRU is relatively new as compared to LSTM. In

some scenarios LSTM works better while in other scenarios

GRU works better. GRU is more computationally efficient

than LSTM since it has a less complex structure [14].
The formulas to update GRU at time t are described as

follows,

 (1)

 (2)

 (3)

 (4)

where is a nonlinear function. is the candidate value

for the memory cell at time instance t. and represent

the outputs of update gate and reset gate respectively. is

the weight matrix for the candidate value .

consists of two weight matrices and stacked

side by side. Similarly and are the weight matrices

for the update gate, forget gate and output gate respectively

and each of and consist of two weight matrices

 and , and and respectively stacked

side by side . means that the matrix

 is stacked on top of the matrix . is

the activation at time instance <t>, is the input at time

instance <t>. , and are the bias vectors. is the

value of the memory cell at time instance t.

 The formulas to update LSTM at time t are described as

follows,

 (5)

 (6)

 (7)

 (8)

 (9)

 (10)

where is a nonlinear function. is the candidate

value for the memory cell at time instance t. , and
represent the outputs of update gate, forget gate and output

gate respectively. is the weight matrix for the candidate

value . consists of two weight matrices and

 stacked side by side. Similarly , and are
the weight matrices for the update gate, forget gate and output

gate respectively and each of , and consist of two

weight matrices and , and , and

and respectively stacked side by side .

 means that the matrix is

stacked on top of the matrix . is the activation

at time instance <t>, is the input at time instance <t>.

, , and are the bias vectors. is the value of
the memory cell at time instance t.

C. GRU and LSTM Networks used

Fig. 4: Proposed model for GRU and LSTM

We have used the same layers and hyperparameters for

our GRU and LSTM models, hence we have shown both the

model architecture in the same diagram. The characteristics

of the various layers used in the GRU and LSTM models are

mentioned below:

1. A GRU (in case of the GRU model) or an LSTM (in

case of the LSTM model) layer both with 64 units

(which means that the dimensionality of the output

space of the GRU or LSTM layer is 64) and tanh(.)

activation function. L2 regularization factor for

input kernel = 0.044 and for recurrent kernel = 0.014

2. The output of the GRU or LSTM layer is fed into the

first fully connected layer (i.e., dense layer) which

has 64 hidden units and linear activation function.

L2 regularization factor = 0.027.

3. Batch normalization is applied to the output of the

first dense layer. Then “Leaky RelU” activation

function is applied.

4. The output obtained after applying Leaky Relu

activation function is fed into the second dense layer

which has 32 hidden units and linear activation

function. L2 regularization factor = 0.027.

5. Batch normalization is applied to the output of the

second dense layer. Then “Leaky RelU” activation

function is applied.

6. The output obtained after applying Leaky Relu
activation function is fed into a softmax layer with
11 units since we have 11 categories.

Subhalaxmi Chakraborty et. al., American Journal of Electronics & Communication, Vol. III (3), 20-26

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 23

Fig. 5: Summary of GRU model

Fig. 6: Summary of LSTM model

The kernel initializer (i.e. the initialization of the matrices

, , , and) used is "glorot uniform"
and the recurrent initializer (i.e. the initialization of the

matrices , , , and) used is
"orthogonal". These initializations help reduce the problem of
vanishing gradients. In order to reduce overfitting, L2
regularization has been used in the LSTM and GRU layers
as well as in the two fully connected layers. This helped
increase validation set accuracy. Applying batch
normalization greatly improved convergence. Without
using batch normalization, we had to train the models for
around 1000 epochs to achieve satisfactory convergence.
After we applied batch normalization, we had to train the
model for only around 150 epochs to get satisfactory
convergence. Also, during training without batch
normalization, the loss kept spiking aggressively from time to
time. Batch normalization, along with learning rate schedule
described later, helped greatly reduce the problem.

To train LSTM and GRU networks, the Adam algorithm
has been used, which is an optimization algorithm of mini-
batch gradient descent which combines RMSprop and
gradient descent with momentum, to minimize the categorical
cross entropy loss function. The reason behind using Adam is
it combines the benefits of both RMSprop and gradient
descent with momentum, and helps mini-batch converge
faster and perform better.

When training a model, it is often useful to lower the
learning rate as the training progresses. This observation is
done at this first hand, as during training with a reasonably
small but fixed learning rate, the loss kept spiking
aggressively from time to time. To reduce this, a learning rate
schedule called Inverse Time Decay has been used. This
schedule applies the inverse decay function to an optimizer
step, given a provided initial learning rate. The initial learning
rate has been set to 0.002.

Finally, the model is fit to the data and the back
propagation algorithm is used to update the weights. The
training has been done for 150 epochs with a mini-batch size
of 64. After training, the weights of the model have been
stored on secondary storage for future use.For coding the
entire model, the TensorFlow programming framework has
been used.

V. RESULTS

A. Performance of the proposed models

 As mentioned before, the dataset consists of 1600
examples. After shuffling the data once, we took 87.5% of the
dataset as the training dataset, the 6.25% as the validation
dataset and the remaining 6.25% as the test dataset. This
translates to 1400 training set examples, 100 validation set
examples and 100 test set examples. In order to perform
hyperparameter tuning, the models were trained several times
with different settings of hyperparameters, like learning rate,
L2 regularization factor and number of hidden units in the
dense layers. After finding the optimal setting of
hyperparameters, the performances of the models on the
training and validation sets are demonstrated by the graphs
shown in Fig. 7 and Fig. 8.

Fig. 7: Performance of GRU model on training and validation sets

Fig. 8: Classification report of GRU model

For GRU, after 150 epochs,

Training set categorical accuracy = 100%

Validation set categorical accuracy = 100%
Test set categorical accuracy = 99%

Subhalaxmi Chakraborty et. al., American Journal of Electronics & Communication, Vol. III (3), 20-26

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 24

Fig. 9: Performance of LSTM model on training and validation datasets

Fig. 10: Classification report of LSTM model

For LSTM, after 150 epochs,

Training set categorical accuracy = 100%

Validation set categorical accuracy = 100%

Test set categorical accuracy = 99%
 As we can see, although GRU is simpler than LSTM, in
our case, it gives exactly the same accuracy as that of the
LSTM model, while also being computationally less
expensive.

B. Comparative analysis

 For the sake of validation, the performance of the model
to three existing models on SLR has also been compared.
Kshitij Bantupalli and Ying Xie [6] worked on an American
sign language recognition system which works on video
sequences based on CNN, LSTM and RNN. A CNN model
named Inception was used to extract spatial features from
frames, LSTM for longer time dependencies and RNN to
extract temporal features. Various experiments were
conducted with varying sample sizes and the dataset consists
of 100 different signs performed by 5 signers and maximum
accuracy of 91% was obtained. Sequence is then fed to a
LSTM for longer time dependencies. Outputs of softmax layer
and max pooling layer are fed to RNN architecture to extract
temporal features from softmax layer. Vivek [13] developed a
model for American Sign Language recognition consisting of
a custom CNN model consisting of 6 convolutional layers
with a dropout of 0.25. and a final dropout layer of dropout
0.5. The model was trained on a custom dataset of the authors
based on the ASL dataset consisting of only static hand
gestures. We also compared the model to a model developed
by Lu [12] on SLR. The model consisted of a pretrained CNN
named ResNet which was trained by transfer learning for the
VIVA Gesture dataset followed by an RNN developed by the
authors. The model was trained for 20 epochs with a learning

rate of 1-e4 and ADAM for stochastic gradient descent. The
batch size was set to 48 and 8-fold cross validation was used
by the authors. The authors also performed augmentation on
their dataset.

Accuracy of proposed

model using Mediapipe

and GRU

99%

Accuracy of proposed

model using Mediapipe

and LSTM

99%

Accuracy of Kshitij

Bantupalli and Ying Xie

[6]

91%

Accuracy of Vivek et al.

[13]
84%

Accuracy of Lu et al. [12] 83%

Table 1: Comparison of the performances of proposed

models with three other models

 As seen from the table above, our proposed models
achieve much greater accuracy than the the other three
models. However, it should be noted that the results of the
models of [6], [12] and [13] were obtained from a test set of
200 samples consisting of 100 signs. Our result, on the other
hand, is obtained from a test set of 100 samples consisting of
10 signs and an additional category called “no action”.

C. Real-time output

 In real time, both the models perform quite well. It detects
most of the signs correctly. Sometimes it gives wrong
predictions between signs which involve similar hand
movements like the signs for "me" and "please". For such
types of actions, additional data were recorded, which
increased the accuracy of predictions for these categories.
Most of the training data was recorded with the signer in a
standing position, hence in real time, the model performs
better if the signer is in a standing position, which is normally
the case while signing.

Subhalaxmi Chakraborty et. al., American Journal of Electronics & Communication, Vol. III (3), 20-26

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 25

Table 2: Examples of predictions in real-time

 While predicting in real time, the confidence of the
predictions are displayed on the left side of the output window
by the length of the horizontal bars. The last 6 predictions are
displayed on the top of output window within the blue bar as
can be seen in the figures of Table 2. The colors of the
prediction rectangles are generated randomly. Lastly a feature
to speak out the predictions using the gTTS (google text to
speech) package in python has been added. It means that the
person with whom a deaf or mute person tries to communicate
using our program, will be able to hear the words and phrases
denoted by the signs. FFMPEG need to be installed for this
feature to work.

VI. CONCLUSION

 In this paper, an effective continuous ASL recognition
method has been proposed, which is based on the combination
of landmark detection using MediaPipe Holistic and GRU and
LSTM. It contains two major components, analyzing the
gestures from images and classifying signs. The performances
of the GRU and LSTM models has been analysed. The
powerful landmark detection of MediaPipe Holistic and the
ability of the GRU and LSTM networks to learn from
contextual information helped achieve remarkable accuracy in
the experiments on our self-built dataset. It is believed that
the proposed method can meet all the actual application needs
and the real-time system can be able to solve the problems
faced by people with hearing and speech impairments easily
in the near future.

VII. FUTURE PROSPECTS

 The issue that has been faced was video stuttering because
of lack of CPU power. This causes lots of problems while
recording training videos and during real time testing, as the
frames are captured after some time intervals, but the person
is doing the sign language smoothly. This affects the accuracy
of the model in real time, as during real time detection, the
computer has to do much more processing during frames to
run each frame through the MediaPipe Holistic and then
through the neural network. So one of the future prospects is
to train and test the performance of the model on a high end
pc (ideally with a dedicated GPU). Also if one can get in up
and running on google colab, it can help solve the issue. The
other future prospect is that this model can be integrated into
a video calling web application, which will help a deaf and
mute person communicate through video calls with a person
who does not understand sign language. Collection of a lot
more data and train the model to improve its accuracy in real
time detection and also add signs for more words.

REFERENCES

[1] Hanke, Thomas. "HamNoSys-representing sign language data in
language resources and language processing contexts." In LREC, vol.
4, pp. 1-6. 2004.

[2] Bohra, Tanuj, Shaunak Sompura, Krish Parekh, and Purva Raut. "Real-
Time Two Way Communication System for Speech and Hearing
Impaired Using Computer Vision and Deep Learning." In 2019
International Conference on Smart Systems and Inventive Technology
(ICSSIT), pp. 734-739. IEEE, 2019.

[3] Singha, Joyeeta, and Karen Das. "Recognition of Indian sign language
in live video." arXiv preprint arXiv:1306.1301 (2013).

[4] Mariappan, H. Muthu, and V. Gomathi. "Real-time recognition of
Indian sign language." In 2019 International Conference on
Computational Intelligence in Data Science (ICCIDS), pp. 1-6. IEEE,
2019.

[5] Rajasegarar, Sutharshan, Christopher Leckie, Marimuthu Palaniswami,
and James C. Bezdek. "Quarter sphere based distributed anomaly
detection in wireless sensor networks." In 2007 IEEE International
Conference on Communications, pp. 3864-3869. IEEE, 2007.

[6] Bantupalli, Kshitij, and Ying Xie. "American sign language
recognition using deep learning and computer vision." In 2018 IEEE
International Conference on Big Data (Big Data), pp. 4896-4899.
IEEE, 2018.

[7] Zhang, Fan, Valentin Bazarevsky, Andrey Vakunov, Andrei
Tkachenka, George Sung, Chuo-Ling Chang, and Matthias
Grundmann. "Mediapipe hands: On-device real-time hand
tracking." arXiv preprint arXiv:2006.10214 (2020).

[8] Graves, Alex. "Supervised sequence labelling." In Supervised
sequence labelling with recurrent neural networks, pp. 5-13. springer,
berlin, Heidelberg, 2012.

[9] Rao, G. Anantha, K. Syamala, P. V. V. Kishore, and A. S. C. S. Sastry.
"Deep convolutional neural networks for sign language recognition."
In 2018 Conference on Signal Processing And Communication
Engineering Systems (SPACES), pp. 194-197. IEEE, 2018.

[10] Nagpal, Nakul, Dr Arun Mitra, and Dr Pankaj Agrawal. "Design issue
and proposed implementation of communication Aid for Deaf & Dumb
People." International Journal on Recent and Innovation Trends in
Computing and Communication 3, no. 5 (2015): 431-433.

[11] Neelam K. Gilorkar, Manisha M. Ingle, “Real Time Detection
And Recognition Of Indian And American Sign Language
Using Sift”, International Journal of Electronics and
Communication Engineering & Technology (IJECET), Volume
5, Issue 5, pp. 11-18 , May2014.

[12] Lu, Dongwei, Chu Qiu, and Yi Xiao. "Temporal convolutional neural
network for gesture recognition." In 2018 IEEE/ACIS 17th
International Conference on Computer and Information Science
(ICIS), pp. 367-371. IEEE, 2018.

[13] Bheda, Vivek, and Dianna Radpour. "Using deep convolutional
networks for gesture recognition in american sign language." arXiv
preprint arXiv:1710.06836 (2017).

[14] Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua
Bengio. "Empirical evaluation of gated recurrent neural networks on
sequence modeling." arXiv preprint arXiv:1412.3555 (2014).

Subhalaxmi Chakraborty et. al., American Journal of Electronics & Communication, Vol. III (3), 20-26

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page 26

