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Abstract— Speech impairment is a kind of disability, affects 

individual’s ability to communicate with each other. People with 

this problem use sign language for their communication. 

Though communication through sign language has been taken 

care of, there exists communication gap between signed and 

non-signed people. To overcome this type of complexity 

researchers are trying to develop systems using deep learning 

approach. The main objective of this paper is subject to 

implement a vision-based application that offers translation of 

sign language to voice message and text to reduce the gap 

between two kinds of people mentioned above. The proposed 

model extracts temporal and spatial features after taking video 

sequences. To extract the spatial features, MediaPipe Holistic 

has been used that consists of several solutions for the detecting 

face, had and pose landmarks. Different kind of RNN 

(Recurrent Neural Network) like LSTM (Long Short-Term 

Memory) and GRU (Gated Recurrent Unit) have been used is to 

train on temporal features. By using both models and American 

Signed Language, 99% accuracy has been achieved. The 

experimental result shows that the recognition method with 

MediaPipe Holistic followed by GRU or LSTM can achieve a 

high recognition rate that meets the need of a Sign Language 

Recognition system that on the real-time basis. Based on the 

expectation, this analysis will facilitate creation of intelligent-

based Sign Language Recognition systems and knowledge 

accumulation and provide direction to guide to the correct path. 

Keywords— Sign Language Recognition, MediaPipe, landmark 

detection, Recurrent Neural Network, Long Short-Term Memory, 

Gated Recurrent Unit (Key words) 

I. INTRODUCTION 

Sign language is an essential means of communication for 

deaf people. It consists of complex hand shapes, movements, 

hand positions, facial expressions, etc. People with speech and 

hearing disabilities use sign language as a nonverbal 

communication tool to express their feelings and thoughts to 

the rest of the public. However, because these members of the 

public find it difficult to understand their expressions, trained 

sign language professionals are needed in medical, legal, 

educational and training sessions. The demand for these 

services has increased in recent years. Services such as video 

remote interpretation using high-speed Internet connections 

have also been introduced, and while these sign language 

interpretation services are easy to use and enjoyable, there are 

major restrictions such as access restrictions. To high-speed 

Internet and compatible devices. 
To address this, a landmark recognition pipeline named 

MediaPipe Holistic followed by GRU and LSTM has been 
used to recognize gestures in sign language. An American 

Sign Language dataset has been recorded and used based on 
the available videos that exists on the Internet [1] to train the 
model to recognize gestures. The dataset has 10 different 
gestures performed multiple times giving us variation in 
context and video conditions. For simplicity, the videos are 
recorded at a common frame rate and have the same number 
of frames. MediaPipe Holistic has been proposed to extract 
spatial features and detect landmarks from the video stream 
for Sign Language Recognition (SLR). Then by using GRU 
(Gated Recurrent Unit) and LSTM (Long Short-Term 
Memory), we can extract temporal features from the video 
sequences. The performance between LSTM and GRU has 
been compared. 

OpenCV has been used for capturing and displaying video 
frames and performing sign language recognition in real-time. 
OpenCV is an available python library that aims at real-time 
computer vision. The entire work has been done using Python 
programming language. 

II. LITERATURE REVIEW

Using deep learning, image processing and also computer 
vision, Tanuj Bohra et al. [2] introduced a communication 
system that is based on the real-time two way sign language. 
Techniques such as skin color segmentation, hand detection, 
contour detection   and median blur are performed on images 
in the dataset for better results. CNN model trained with a 
large dataset for 40 classes and was able to predict 17600 test 
images in 14 seconds with an accuracy of 99%. 

Joyeeta Singha and Karen Das [3] proposed a model for 
indian sign language recognition from a live video. The 
system comprises three stages. Skin filtering and histogram 
matching are pre-processing stages. Eigenvalues and 
eigenvectors are being considered for feature extraction stage 
and Eigen value weighted euclidean distance for 
classification. Twenty people signed dataset that consists 480 
images of 24 signs. Model had been tested on 20 videos 
having an accuracy of 96.25%. 

Real-time Handheld Sign Language Recognition System 
by Dr. Gomathi V. and Mariappan H. [4] Contours are used 
for face, left and right hand detection by using Fuzzy C-means 
and Contour Recognition Algorithm. A fuzzy C-
means algorithm divides the input data into a certain number 
of clusters. This model was implemented on a 
dataset containing videos recorded by 10 signers 
for multiple words and phrases. We were achieving 75% 
accuracy. 
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Hayani et al. [5] proposed an Arabic Sign Language 
recognition system by CNN and inspired by LeNet-5. The 
dataset contained 7869 images of Arabic letters and numerals. 
Various experiments were performed varying the number of 
training sets from 50% to 80%. With having 80% training 
dataset 90% accuracy was achieved. The author also 
compared the results obtained with machine learning 
algorithms such as KNN (k-nearest neighbor) and SVM 
(support vector machine) to show the performance of the 
system. This model was purely image based and can be 
extended to video based recognition. 

Ying Xie and Bantupalli [6] worked on an American sign 
language recognition system that works on video sequences 
based on CNN, LSTM and RNN. A CNN model named 
Inception was used for extracting spatial features from frames, 
LSTM for longer temporal dependencies, and RNN for 
extracting temporal features. Various experiments were 
performed with different sample sizes and the dataset consists 
of 100 different characters performed by 5 signers and a 
maximum accuracy of 91% was achieved. The sequence is 
then fed into an LSTM for longer time dependencies. The 
outputs of the softmax layer and the max pooling layer are fed 
to the RNN architecture to extract temporal features from the 
softmax layer. 

Rao et al. [9] proposes Indian Sign Language gesture 
recognition using CNN. This system works on videos 
captured by the mobile phone's front camera. The dataset is 
manually created for 200 ISL brands. CNN training is done 
with 3 different datasets. In the first batch, the dataset of only 
one set is given as input. The second batch has 2 sets of 
training data and the third batch has 3 sets of training data. The 
average recognition rate of this CNN model is 92.88%. 

Real-time recognition and detection of American and 

Indian Sign Language using Sift In [10]: The author proposed 

a real-time vision-based hand gesture recognition system for 

the purpose of human and computer interaction. The system 

can recognize 35 different hand gestures given in American 

and Indian Sign Language or ASL and ISL faster with various 

accuracy. An RGB-to-GRAY segmentation technique was 

used to minimize the possibility of false detection. The 

authors proposed an improvised Scale Invariant Feature 

Transform (SIFT) method and the same was used to extract 

the features. The system is modeled using MATLAB. A GUI 

model was implemented to design and efficient user-friendly 

hand gesture recognition system. 

Feature Extraction for Indian and American Sign 

Language [11] presented development and recent research of 

sign language based on body language and manual 

communication. A sign language recognition system 

typically goes through three steps of preprocessing, character 

extraction, and classification. The classification methods 

used for recognition are Neural Network (NN), Support 

Vector Machine (SVM), Hidden Markov Models (HMM), 

Scale Invariant Feature Transform (SIFT), etc. 

The literature review shows that there have been different 

approaches to this problem within neural networks itself. The 

input feed to the neural networks plays a big role in how the 

architecture of the network is shaped, such is a 3DCNN 

model would take RGB input along with the depth field. Lu 

et al. [12] used a general CNN network to extract spatial 

features and used an LSTM to extract sequence features. 

Vivek et al. [13] used CNN models with RGB inputs for their 

architecture. The authors of [13] worked on American Sign 

Language with a custom dataset of their own making. The 

architecture in [12] was a pretrained CNN called ResNet 

along with a custom LSTM of their 8 designs whereas [13] 

used a CNN for stationary hand gestures. 

III. PROBLEM STATEMENT AND DATASET DESCRIPTION

Before The objective is to apply Deep Learning 
algorithms to detect, in real time, what is being conveyed 
using American Sign Language by a signer. The program 
should be able to detect static signs as well as signs which 
require motion. The input will be obtained from a camera 
focused directly on the signer providing a front view. The 
sequence of frames will be run processed and the resultant 
output will be displayed and played. 

The dataset used here was obtained by first recording 
videos of ourselves using 10 common words and phrases in 
American Sign language, they are "hello", "I love you", "thank 
you", "food", "friend", "forget", "again", "me", "want" and 
"please". There is also an additional category "no action", in 
which the signer shows no signs or the signer is not present in 
the frame at all. Each word was individually recorded for a 
minimum of 90 times with subtle variations in distance from 
the camera and angle of the camera, speed of signing, etc. 
These variations were introduced to imitate practical real-time 
scenarios. The videos were recorded using a HP-eq0500au 
laptop webcam with a resolution of 640 X 480 at 30 frames 
per second (fps). For simplicity, the length of each video was 
capped at 30 frames. 

Each frame of a video was fed into the MediaPipe holistic 

pipeline to get face, pose and hand landmarks. Each of the 

face and hand landmarks consists of the following: 

• x and y: Landmark coordinates normalized to [0.0, 1.0]
by the image width and height respectively.

• z: Represents the landmark depth with the depth at the
midpoint of hips being the origin, and the smaller the
value the closer the landmark is to the camera. The z
magnitude uses the same scale of x.

Each pose landmark consists of a visibility attribute, 

which is a value in [0.0, 1.0] indicating the possibility of 

landmark being visible in the image. 

Graphics and text files were kept separate until text was 
edited and formatted. Cannot use hard tabs and limit the use 
of hard returns to only one return at the end of a paragraph. No 
type of pagination can be added anywhere in the paper. Text 
headers - the template will do the number. 

For each image, 468 facial landmarks and 33 pose 
landmarks were produced. For each hand, 21 landmarks were 
produced, assuming that particular hand was in the frame. If a 
particular hand was not in the frame, then MediaPipe holistic 
does not return any landmarks for that hand. We designed the 
programming logic so that if no hand is present in the frame, 
we get zeros for the coordinates of each hand landmark. To 
feed these landmarks into the LSTM and GRU models, we 
wrote an extract keypoints() function that first flattens and 
concatenates each category (face, pose, left hand, right hand) 
of landmarks into 4 numpy arrays. It then concatenates the 

four array numps into one numpy of length 1662 (ie 4✕33 + 

3✕468 + 3✕21✕2). All 30 video frames were processed this 
way and the resulting numpy fields were concatenated. So we 
got a numpy array of shapes (30, 1662) from each video. We 
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recorded a total of 1600 videos, of which 90 are in the "no 
action" category (meaning no signs are shown), giving us a 
shapeless array of shapes (1600, 30, 1662) as our dataset. For 
some brands, we had to upload more videos to reduce 
overfitting and improve model performance. 

IV. PROPOSED SYSTEM 

In this section, LSTM and GRU based neural network 
architectures have been used for continuous SLR using 
landmark detection with MediaPipe Holistic. 

 

Fig. 1: Proposed framework for real-time SLR using landmark recognition 

with MediaPipe Holistic, GRU and LSTM. 

 The flow diagram of the framework is depicted in Fig. 1, 
where a camera is used to acquire the sign inputs. OpenCV 
has been used to take input from the camera and for displaying 
the video frames. The data is then pre-processed as described 
in Chapter 3. 

A. MediaPipe Holistic 

MediaPipe is a kind of framework for building machine 
learning pipelines for video, audio, etc. kind of time series data 
and was developed by Google. This cross-platform framework 
works on Desktop/Server, Android, iOS and embedded 
devices like Raspberry Pi and Jetson Nano. Although 
MediaPipe is currently in alpha version 0.7, it works quite well 
for our purpose. MediaPipe offers open source and 
customizable ML solutions for streaming and live media. 
Some of these solutions are Face Detection, Face Mesh, Iris, 
Hands, Pose, Holistic and so on. 

For the purposes of our project, MediaPipe's Holistic 
Solution has been used. The MediaPipe Holistic pipeline 
integrates separate models for face, pose and hand 
components, each optimized for its specific domain. However, 
due to their different specialization, entry into one component 
is not suitable for others. For example, the pose estimation 
model takes as input a video frame with a lower fixed 
resolution (256x256). However, if the hand and face areas 
were cropped from this image to fit into their respective 
models, the image resolution would be too low for accurate 
articulation. MediaPipe Holistic is therefore designed as a 

multi-stage pipeline that processes different regions using 
region-appropriate image resolutions. 

First, the human pose (upper part of Fig. 2) is estimated 
using the BlazePose pose detector [7] and the subsequent 
landmark model. Then, three regions of interest (ROIs) for 
each hand (2x) and face are derived using the derived pose 
landmarks, and a re-crop model is used to improve the ROI. 
Then, the full-resolution input image is cropped to these 
regions of interest, and task-specific face and hand models are 
used to estimate their corresponding landmarks. Finally, all 
the landmarks are merged with the landmarks from the pose 
model to get the full 540+ landmarks. 

 

Fig. 2: MediaPipe Holistic Pipeline Overview 

Using MediaPipe saved us a lot of effort which would be 
needed to develop our own Convolutional Neural Network 
(CNN) for detecting landmarks. We would also have to train 
the model on large image datasets or use a pretrained model 
and use transfer learning. Mediapipe Holistic is also quite 
resilient to variations in background, provided that the 
background is not too similar to the color of the skin or of the 
dress, and that the shot is well lit. Thus, using MediaPipe 
Holistic eased our workflow, concentrate efforts on 
developing the appropriate GRU and LSTM based neural 
networks to predict the signs from a sequence of frames. 

 

Fig. 3: Landmark detection using MediaPipe Holistic 

B. Gated Recurrent Unit (GRU) and Long Short Term 

Memxzory (LSTM) Network 

GRU and LSTM architectures are variants of Recurrent 

Neural Network (RNN) (which is a class of neural networks 

which work on sequence data), which are designed to 

confront the vanishing gradient problem. The vanishing 

gradient problem in RNN makes the RNN unable to retain 

contextual-information over a long term. GRU and LSTM 

overcome this problem by using memory blocks or cells to 

store and access information over long periods of time. 

Hence, both GRU and LSTM are very suitable for continuous 
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recognition tasks, which demand the use of long-term 

contextual information [8].  

GRU uses two gates, an update gate and a reset gate, 

while LSTM uses an update gate, a forget gate and an 

output gate. LSTM is slightly more powerful than GRU, 

however GRU is a bit easier to train as it has less parameters 

than LSTM. GRU is relatively new as compared to LSTM. In 

some scenarios LSTM works better while in other scenarios 

GRU works better. GRU is more computationally efficient 

than LSTM since it has a less complex structure [14]. 
The formulas to update GRU at time t are described as 

follows, 

 

 (1) 

 

 (2) 

 

 (3) 

 

 (4) 

where  is a nonlinear function.  is the candidate value 

for the memory cell at time instance t.  and  represent 

the outputs of update gate and reset gate respectively.  is 

the weight matrix for the candidate value .  

consists of two weight matrices  and  stacked 

side by side. Similarly  and  are the weight matrices 

for the update gate, forget gate and output gate respectively 

and each of  and  consist of two weight matrices 

 and , and  and  respectively stacked 

side by side .  means that the matrix 

 is stacked on top of the matrix .  is 

the activation at time instance <t>,   is the input at time 

instance <t>. ,  and  are the bias vectors.  is the 

value of the memory cell at time instance t. 

    The formulas to update LSTM at time t are described as 

follows, 

 (5) 

 (6) 

 (7) 

 (8) 

 (9) 

 (10) 

where  is a nonlinear function.  is the candidate 

value for the memory cell at time instance t. ,  and  
represent the outputs of update gate, forget gate and output 

gate respectively.  is the weight matrix for the candidate 

value .  consists of two weight matrices  and 

 stacked side by side. Similarly ,  and  are 
the weight matrices for the update gate, forget gate and output 

gate respectively and each of ,  and  consist of two 

weight matrices  and ,  and , and  

and  respectively stacked side by side . 

 means that the matrix  is 

stacked on top of the matrix .  is the activation 

at time instance <t>,   is the input at time instance <t>. 

, ,  and  are the bias vectors.  is the value of 
the memory cell at time instance t. 

C. GRU and LSTM Networks used 

 

Fig. 4: Proposed model for GRU and LSTM 

We have used the same layers and hyperparameters for 

our GRU and LSTM models, hence we have shown both the 

model architecture in the same diagram. The characteristics 

of the various layers used in the GRU and LSTM models are 

mentioned below: 

1. A GRU (in case of the GRU model) or an LSTM (in 

case of the LSTM model) layer both with 64 units 

(which means that the dimensionality of the output 

space of the GRU or LSTM layer is 64) and tanh(.) 

activation function. L2 regularization factor for 

input kernel = 0.044 and for recurrent kernel = 0.014 

2. The output of the GRU or LSTM layer is fed into the 

first fully connected layer (i.e., dense layer) which 

has 64 hidden units and linear activation function. 

L2 regularization factor = 0.027. 

3. Batch normalization is applied to the output of the 

first dense layer. Then “Leaky RelU” activation 

function is applied. 

4. The output obtained after applying Leaky Relu 

activation function is fed into the second dense layer 

which has 32 hidden units and linear activation 

function. L2 regularization factor = 0.027. 

5.  Batch normalization is applied to the output of the 

second dense layer. Then “Leaky RelU” activation 

function is applied. 

6. The output obtained after applying Leaky Relu 
activation function is fed into a softmax layer with 
11 units since we have 11 categories. 
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Fig. 5: Summary of GRU model 

 

Fig. 6: Summary of LSTM model 

The kernel initializer (i.e. the initialization of the matrices 

, , ,  and ) used is "glorot uniform" 
and the recurrent initializer (i.e. the initialization of the 

matrices , , ,  and ) used is 
"orthogonal". These initializations help reduce the problem of 
vanishing gradients. In order to reduce overfitting, L2 
regularization has been used in the LSTM and GRU layers 
as well as in the two fully connected layers. This helped 
increase validation set accuracy. Applying batch 
normalization greatly improved convergence. Without 
using batch normalization, we had to train the models for 
around 1000 epochs to achieve satisfactory convergence.  
After we applied batch normalization, we had to train the 
model for only around 150 epochs to get satisfactory 
convergence. Also, during training without batch 
normalization, the loss kept spiking aggressively from time to 
time. Batch normalization, along with learning rate schedule 
described later, helped greatly reduce the problem. 

To train LSTM and GRU networks, the Adam algorithm 
has been used, which is an optimization algorithm of mini-
batch gradient descent which combines RMSprop and 
gradient descent with momentum, to minimize the categorical 
cross entropy loss function. The reason behind using Adam is 
it combines the benefits of both RMSprop and gradient 
descent with momentum, and helps mini-batch converge 
faster and perform better. 

When training a model, it is often useful to lower the 
learning rate as the training progresses. This observation is 
done at this first hand, as during training with a reasonably 
small but fixed learning rate, the loss kept spiking 
aggressively from time to time. To reduce this, a learning rate 
schedule called Inverse Time Decay has been used. This 
schedule applies the inverse decay function to an optimizer 
step, given a provided initial learning rate. The initial learning 
rate has been set to 0.002. 

Finally, the model is fit to the data and the back 
propagation algorithm is used to update the weights. The 
training has been done for 150 epochs with a mini-batch size 
of 64. After training, the weights of the model have been 
stored on secondary storage for future use.For coding the 
entire model, the TensorFlow programming framework has 
been used. 

V. RESULTS 

A. Performance of the proposed models 

 As mentioned before, the dataset consists of 1600 
examples. After shuffling the data once, we took 87.5% of the 
dataset as the training dataset, the 6.25% as the validation 
dataset and the remaining 6.25% as the test dataset. This 
translates to 1400 training set examples, 100 validation set 
examples and 100 test set examples. In order to perform 
hyperparameter tuning, the models were trained several times 
with different settings of hyperparameters, like learning rate, 
L2 regularization factor and number of hidden units in the 
dense layers. After finding the optimal setting of 
hyperparameters, the performances of the models on the 
training and validation sets are demonstrated by the graphs 
shown in Fig. 7 and Fig. 8. 

 

Fig. 7: Performance of GRU model on training and validation sets 

 

Fig. 8: Classification report of GRU model 

For GRU, after 150 epochs, 

Training set categorical accuracy = 100% 

Validation set categorical accuracy = 100% 
Test set categorical accuracy = 99% 
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Fig. 9: Performance of LSTM model on training and validation datasets 

 

Fig. 10: Classification report of LSTM model 

For LSTM, after 150 epochs, 

Training set categorical accuracy = 100% 

Validation set categorical accuracy = 100% 

Test set categorical accuracy = 99% 
 As we can see, although GRU is simpler than LSTM, in 
our case, it gives exactly the same accuracy as that of the 
LSTM model, while also being computationally less 
expensive. 

B. Comparative analysis 

 For the sake of validation, the performance of the model 
to three existing models on SLR has also been compared. 
Kshitij Bantupalli and Ying Xie [6] worked on an American 
sign language recognition system which works on video 
sequences based on CNN, LSTM and RNN. A CNN model 
named Inception was used to extract spatial features from 
frames, LSTM for longer time dependencies and RNN to 
extract temporal features. Various experiments were 
conducted with varying sample sizes and the dataset consists 
of 100 different signs performed by 5 signers and maximum 
accuracy of 91% was obtained. Sequence is then fed to a 
LSTM for longer time dependencies. Outputs of softmax layer 
and max pooling layer are fed to RNN architecture to extract 
temporal features from softmax layer. Vivek [13] developed a 
model for American Sign Language recognition consisting of 
a custom CNN model consisting of 6 convolutional layers 
with a dropout of 0.25. and a final dropout layer of dropout 
0.5. The model was trained on a custom dataset of the authors 
based on the ASL dataset consisting of only static hand 
gestures. We also compared the model to a model developed 
by Lu [12] on SLR. The model consisted of a pretrained CNN 
named ResNet which was trained by transfer learning for the 
VIVA Gesture dataset followed by an RNN developed by the 
authors. The model was trained for 20 epochs with a learning 

rate of 1-e4 and ADAM for stochastic gradient descent. The 
batch size was set to 48 and 8-fold cross validation was used 
by the authors. The authors also performed augmentation on 
their dataset. 

Accuracy of proposed 

model using Mediapipe 

and GRU 

99% 

Accuracy of proposed 

model using Mediapipe 

and LSTM 

99% 

Accuracy of Kshitij 

Bantupalli and Ying Xie 

[6] 

91% 

Accuracy of Vivek et al. 

[13] 
84% 

Accuracy of Lu et al. [12] 83% 

Table 1: Comparison of the performances of proposed 

models with three other models 

 As seen from the table above, our proposed models 
achieve much greater accuracy than the the other three 
models. However, it should be noted that the results of the 
models of [6], [12] and [13] were obtained from a test set of 
200 samples consisting of 100 signs. Our result, on the other 
hand, is obtained from a test set of 100 samples consisting of 
10 signs and an additional category called “no action”. 

C. Real-time output 

 In real time, both the models perform quite well. It detects 
most of the signs correctly. Sometimes it gives wrong 
predictions between signs which involve similar hand 
movements like the signs for "me" and "please". For such 
types of actions, additional data were recorded, which 
increased the accuracy of predictions for these categories. 
Most of the training data was recorded with the signer in a 
standing position, hence in real time, the model performs 
better if the signer is in a standing position, which is normally 
the case while signing. 
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Table 2: Examples of predictions in real-time 

 While predicting in real time, the confidence of the 
predictions are displayed on the left side of the output window 
by the length of the horizontal bars. The last 6 predictions are 
displayed on the top of output window within the blue bar as 
can be seen in the figures of Table 2. The colors of the 
prediction rectangles are generated randomly. Lastly a feature 
to speak out the predictions using the gTTS (google text to 
speech) package in python has been added. It means that the 
person with whom a deaf or mute person tries to communicate 
using our program, will be able to hear the words and phrases 
denoted by the signs. FFMPEG need to be installed for this 
feature to work. 

VI. CONCLUSION

 In this paper, an effective continuous ASL recognition 
method has been proposed, which is based on the combination 
of landmark detection using MediaPipe Holistic and GRU and 
LSTM. It contains two major components, analyzing the 
gestures from images and classifying signs. The performances 
of the GRU and LSTM models has been analysed. The 
powerful landmark detection of MediaPipe Holistic and the 
ability of the GRU and LSTM networks to learn from 
contextual information helped achieve remarkable accuracy in 
the experiments on our self-built dataset. It is  believed that 
the proposed method can meet all the actual application needs 
and the real-time system can be able to solve the problems 
faced by people with hearing and speech impairments easily 
in the near future. 

VII. FUTURE PROSPECTS

 The issue that has been faced was video stuttering because 
of lack of CPU power. This causes lots of problems while 
recording training videos and during real time testing, as the 
frames are captured after some time intervals, but the person 
is doing the sign language smoothly. This affects the accuracy 
of the model in real time, as during real time detection, the 
computer has to do much more processing during frames to 
run each frame through the MediaPipe Holistic and then 
through the neural network. So one of the future prospects is 
to train and test the performance of the model on a high end 
pc (ideally with a dedicated GPU). Also if one can get in up 
and running on google colab, it can help solve the issue. The 
other future prospect is that this model can be integrated into 
a video calling web application, which will help a deaf and 
mute person communicate through video calls with a person 
who does not understand sign language. Collection of a lot 
more data and train the model to improve its accuracy in real 
time detection and also add signs for more words. 
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