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ABSTRACT

Big  data  security  is  a  significant  concern  today  due  to
rapidly growing data volume, velocity, and varieties of data
in nature.   Data security is a major concern because during
transmission  through  insecure  channels.   From  its
recognition,  the  Montgomery  multi-digit  multiplication
algorithms  are still  well-accepted  approaches  in  the
numerical  calculation,  chaos  arithmetic,  and  high-
performance  implementation  of  public  key  cryptosystems
such  as  RSA,   Diffie-Hellman,  and  the  Elliptic  curve
cryptosystems. We have presented the comparative study of
multi-digit  integer  multiplication  algorithms,  and  their
performance is evaluated in terms of CPU execution time.
Montgomery  modular  multiplication  is  a  good  practice,
among others. 

Keywords   Montgomery, Karatsuba,  Classical 
Multiplication, Performance Analysis.

1. INTRODUCTION
Modular arithmetic is one of the cornerstones of public-key
cryptography. Therefore, it is desirable to have an efficient
implementation  of  modular  arithmetic  approach.  While
modular additions and subtractions are rather trivial cases,
efficient  modular  multiplication  remains  an  elusive  target
for optimization. The two most widely used algorithms for
modular  multiplication  are  Montgomery’s  method  [3].
Modular  reduction  algorithms  can  be  categories  in  two
classes,  the  left-to-right  and  right-to-left  algorithms.
Variations of these two schemes were reported in [4, 5], but
the essential idea is the same.
      R. Garg and R. Vig [6] made an interesting observation
on efficient Montgomery Multiplication Algorithm and RSA
Cryptographic Processor that employs multi-bit shifting and
carry save addition to perform long integer arithmetic. C. K.
Koc  and  T.  Acar   [7]   present  a  new  method  for  fast
implementation of exponentiation operation in GF(2k). The
proposed  method  is  based  on  the  Montgomery
multiplication  algorithm  [3]  which  eliminates  the  mod  n
reduction steps. The result  tends to reduce the size of the
timing  characteristics.  Also  Montgomery  multiplication
algorithms speed up the computation operation for modular
exponentiations  and  modular  multiplications  [8].  The
complexity of classical  method for  multiplying integers is
O(N2) and the same is applicable for the modulo operation.

Besides for security reasons these algorithms are applied to
very  large  integers  (1024  bits  or  higher).  Other  methods
exist to multiply (large) integers. Karatsuba and Ofman [9]
proposed a recursive algorithm, which is about O(N1.58) C.
K.  Koc  and   T.  Acar  [10]  proposed  the  Montgomery
multiplication in GF(2k),  they have used the bit  level  and
word level algorithms for computing the product. A through
performance analysis and the algorithm comparison is done
with the other standard multiplication algorithm in  GF(2k).
J. P. David, K. Kalach, N. Tittley [11] made the comparison of
different  Modular  Multiplication  and  Exponentiation
Algorithms. 
    S. Yazaki and K. Abe [12] present two design choices of
the  Karatsuba  hardware:  IKM  (Iterative  Karatsuba
Multiplier) and RKM (Recursive Karatsuba Multiplier).  Z.
Dyka Z, P. Langendoerfer [13] proposed a hardware-based
Karatsuba  algorithm  implementations  over  a  Galois  field
(GF), that can used in elliptic curve cryptography and many
other  applications.  C.  McIvor,  M.  McLoone  and  J.  V.
McCanny  [14]  proposed  a  improved  Montgomery
multiplication  along  with  associated  RSA  modular
exponentiation  algorithms  and  designed  a  circuit
architectures.  They modified multipliers to use carry  save
adders  (CSAs)  to  perform  large  word  length  additions.
Proposed  modified  Montgomery  multiplication  algorithms
are  suitable  for  RSA  exponentiation,  that  can  overcome
carry propagation problem. The proposal uses a five-to-two
CSA and  a  four-to-two  CSA respectively.  Each  one  can
calculate a Montgomery multiplication in only k + 1 and k +
2 clock cycles, respectively. Here k denotes the operand bit
length.  For  the  empirical  analysis  of  the  Montgomery
algorithm in an RSA cryptosystem, Keon-Jik Lee et. al. [15]
made  an  observation  on  digit-serial-in-serial-out  systolic
multiplier. Due processing speed, their proposed multiplier
can also accommodate  bit-level  pipelining.  It  can achieve
sample speeds  compared  to  bit-parallel  multipliers  with  a
lower area.  Chin-Bou Liu et.  al.  [16] made an interesting
observation based on karatsuba multiplication (KM), using
tensor production formulation to express KM algorithm in
both  iterative   and  recursive  form.  Shand  and  Vuillemin
applied  KM  algorithm  to  the  optimal  radix  choice  of
modular  product  applicable  for  RSA  cryptography  [17].
Hollerbach  presented  a  generalization  of  the  Karatsuba’s
algorithm  for  multiplying  very  large  numbers  [18].  D.
Yuliang, M. Zhigang, Y. Yizheng, W. Tao [19] presents a
hardware, implementation of 1024-bit RSA crypto processor
based  on  Montgomery  multiplication   algorithm.  The
processor  can  encrypt  1024 bit  message in less than  0.65
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seconds, with which a  3mm2 die area.  That is suitable for
smart  IC cards. X. Fang and L. Li [20] introduces classical
Knuth  multiplication,  Karatsuba  multiplication  and  their
time  complexity.  Their  experimental  result  shows  more
efficiency  for  implementation  of  large  integer
multiplication. K.  Shiann-Rong  et.  al.  designed  a
architecture  that  results  Low-cost  high-performance  for
Montgomery modular multiplication at VLSI domain [21].
D. Jinnan and  L.  Shuguo presented  a low-cost   and  low-
latency   Montgomery  modular  multiplier  based  on  NLP
multiplication  [22].   Z.  Bo,  C.  Zeming  and  P.  Massoud
proposed  an  Iterative  methodology  for  Montgomery
Modular  Multiplication  Algorithm  with  low  Area-Time
product [23].
   The paper is organized as the followings. In Section 2, we
presented  an  overview  of  the  different  multiplication
algorithms.  Experimental  results  with  input  data  sets  are
presented in Section 3.  Performance analysis is reported in
Section 4. Conclusions are in Section 5.

2. MULTIDIGITMULTI DIGIT ALGORITHM
ANALYSIS

2.1 Montgomery Multiplication
    Montgomery  multiplication is the key methods of  the
modular  exponentiation  operation.  It  follows  a  special
representation of numbers named as 
t2 = a1 × b1

10   u = (a0 + a1) × (b1 + b0)
11   t1 = u – t0 – t2

12   return t = t2 × ω 2 + t1 × ω + t0

  This method can be extended to multi-digit long integers
by recursion.
2.3.2 Karatsuba - Ofman  recursive Algorithm (KORA)
Function KOMA (a,b)
Input: a, b
Output: t = a × b
0    if (sizeof (a)==32 and sizeof (b)==32)
       return a × b
1     t0=KORMA(a0,b0)
2     t2=KORMA(a1,b1)
3     u=KORMA(a1 + a0,b1 + b0)
4     t1 = u – t0 – t2

5     return t = t2 × ω 2 + t1 × ω + t0 

The  following  simple  example  will  help  illustrate  the
algorithm
We  intend  to  multiply  two  integers  5683  by  1148.  For
clarity,  we  will  use  decimal  formalism,  so  ω=10,  m=2.
Initially x and y are split into two equal sized parts as follow
X=a1 ω + a0     and   y=b1 ω   + b0

X=56×102+83         y=11 × 102 + 48
P0 = a0 × b0 = (83 × 48) = 3984 
P2=a1× b1=56× 11= 616
P1=( a0 + a1) ( b0+ b1) - P2 - P0  

 = (83 + 56) (48 + 11) - 616 - 3984
     =8201- 616 - 3948 =3601
P =p2 ω 2+p1 ω +p0

   =616 × 104+ 3601× 102+ 3984
   =6524084

3. EXPERIMENTAL RESULTS

  We  have  implemented  the  Montgomery  Karatsuba  and
Classical  multiplication  algorithms.  We  have  run  the
implementation with set of integers of different problem size
to  obtained  execution  time.  We  have  executed  the
multiplication programs 3000 thousand times and obtained
the  average  timings  for  each  data  set  for  multiplier  and
multiplicand.  The  different  problem  sizes  are  reported  in
Table 1. The execution times are also plotted in Table 2.
    To calculate the processor time we used clock () function
which  is  defined  into the header  file  from the  invocation
time  of  the  called  process  and  time  measured  in  const
CLOCKS_PER_SECs. The CPU execution time depends on
many factors. The first one of them is the produced machine
code, which depends on both the high level source code, and
the compiler used. It also depends on the instruction set of
the  target  processor  as  well  as  the  number  of  available
registers in the processor. The compiler has a key role in the
speed of the executed code. An efficient use of the resources
(including  the  available  registers)  can  speed  up  the
execution.  In this paper, we have simulated three different
multi-digit  multiplication  algorithms  with  respect  to  the
CPU execution time. 

4. COMPARATIVE ANALYSIS

In  this  section,  we  run  the  application  of  above
multiplication algorithms whose input is the large integers
of  different  problem  size  and  the  corresponding  CPU
execution time are given into the table 2.
   From Figure-1  it  is  observed  that,  the  execution  time
interval is increasing linearly for both Classical Algorithm
and Karatsuba  upon increasing the number  of  digits.  The
performance  of  the  Karatsuba  algorithm  is  going  to  be
worse  compared  to  Classical  algorithm.  Moreover,
compared to other two algorithms the execution time taken
for  Montgomery  algorithm  is  almost  steady  instead  of
increasing  the  number  of  digits.  It  is  observed  that  for
multiplication of 6 digits, 12 digits and 18 digits numbers
require same execution time. So it may be concluded that,
the execution  time will  be  same for  the multiplication  of
those numbers, which is a multiple of 6 digits. Furthermore,
up to  4 digits  multiplication the execution  time is almost
same and shown in table 2.  However,  for  5  digits and  6
digits  multiplication,  the  execution  time  is  decreasing  a
little.  The same behavior  is observed for  the higher order
digits  multiplication.  So  Montgomery  algorithm  shows  a
steady  behavior  other  than  the  Karatsuba  and  Classical
algorithm.  
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Figure 1: Comparison result of different multiplication 
algorithm
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  Figure  2  shows  that,  Karatsuba  multiplication  is  the
slowest  of  doing  multiplication  when  the problem size is
less  than  twenty  digits,  even  slower  than  Classical
multiplication, followed by Montgomery multiplication

Figure 2: Comparison results of different Multiplication 
Algorithms. 
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Table 1: Different input Data sets of Multiplication 
Algorithms  

MULTIPLICAND MULTIPLIER

8 6

97 58

759 643

8937 7839

97835 82317

983476 783493

9683773 8348734

89786547 67343576

963793649 813745687

9878939849 9748769817

73849657921 63456175327

984126781019 483456187104

4356739143142 3212496278273

83493192142136 45314508132932

736142139212367 248132181231079

6932101437124869 5231428739023671

74312901325583109 32143268730947712

983423821623983407 423456789012345678

6334567842123416718 4334267219123156717

Table 2: Computation time of different Multiplication 
algorithms (ms)

No of
digits

Montgomer
y

Karatsuba Classical

1 0.4686667 0.5206667 0.4323333

2 0.4634896 0.5833333 0.4793333

3 0.4688212 0.6820000 0.5886667

4 0.4688195 0.8176667 0.7393333

5 0.3594549 0.8750000 0.7863333

6 0.3644532 0.8596667 0.7656667

7 0.4637882 0.9946667 0.9066667

8 0.4687778 1.0520000 0.9686667

9 0.4688229 1.1666667 1.1043333

10 0.4688229 1.2396667 1.1770000

11 0.3543330 1.2863333 1.2293333

12 0.3544514 1.3440000 1.2813333

13 0.5001182 1.4010000 1.3386667

14 0.5055000 1.4636667 1.3960000

15 0.5105018 1.5103333 1.4476667

16 0.5051702 1.5783333 1.5103333

17 0.5051684 1.7033333 1.6563333

18 0.3488351 1.7033333 1.6406667

19 0.5107830 1.7450000 1.6926667

Table 3: Montgomery multiplication example

i xi xiy0 ui xiy uim A
0 3 3×8=24 4 3444 290556 29400
1 8 8×8=64 4 9184 290556 32914
2 6 6×8=48 2 6888 145278 18508
3 5 5×8=40 8 5740 58112 60536
4 0 0×8=0 6 0 435834 49637
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5. CONCLUSIONS

We  present  the  comparison  of  multi-digit  multiplication
algorithms  like  Montgomery,  Karatsuba  and  Classical
algorithms. Among these three, Montgomery multiplication
algorithm  performs  large  integer  modular  multiplication
with greater  speed  and  stable  timing  characteristics  up  to
twenty  digits.  This  may  be  applied  for  the  higher  digits
multiplication also. Karatsuba and Classical algorithm takes
almost same time for multiplication up to twenty digits but
classical  algorithm  faster  than  Karatsuba.  With  these
techniques,  n-bit  multiplication  which  otherwise  has  a
complexity of O (n2) can be performed with a complexity of
O (nlog3).  In future work the enhancement  of Montgomery
modular multiplication for Big data security. 
Cryptography  is  an  essential  task  of  IoT  design.  The
Montgomery  modular  multiplication  approach  can  be
applied for cryptographic approach in IOT devices. 
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