
Comparative Analysis of Multi-digit Modular Multiplication Algorithms for public
key Crypto system in Big Data Security.

Sudarsan Biswas1, Neepa Biswas2

1RCC Institute of Information Technology, Kolkata
2University Engineering & Management, Kolkata

1E-mail: biswas.sudarsan@gmail.com
2E-mail: biswas.neepa@gmail.com

ABSTRACT

Big data security is a significant concern today due to
rapidly growing data volume, velocity, and varieties of data
in nature. Data security is a major concern because during
transmission through insecure channels. From its
recognition, the Montgomery multi-digit multiplication
algorithms are still well-accepted approaches in the
numerical calculation, chaos arithmetic, and high-
performance implementation of public key cryptosystems
such as RSA, Diffie-Hellman, and the Elliptic curve
cryptosystems. We have presented the comparative study of
multi-digit integer multiplication algorithms, and their
performance is evaluated in terms of CPU execution time.
Montgomery modular multiplication is a good practice,
among others.

Keywords Montgomery, Karatsuba, Classical
Multiplication, Performance Analysis.

1. INTRODUCTION
Modular arithmetic is one of the cornerstones of public-key
cryptography. Therefore, it is desirable to have an efficient
implementation of modular arithmetic approach. While
modular additions and subtractions are rather trivial cases,
efficient modular multiplication remains an elusive target
for optimization. The two most widely used algorithms for
modular multiplication are Montgomery’s method [3].
Modular reduction algorithms can be categories in two
classes, the left-to-right and right-to-left algorithms.
Variations of these two schemes were reported in [4, 5], but
the essential idea is the same.
 R. Garg and R. Vig [6] made an interesting observation
on efficient Montgomery Multiplication Algorithm and RSA
Cryptographic Processor that employs multi-bit shifting and
carry save addition to perform long integer arithmetic. C. K.
Koc and T. Acar [7] present a new method for fast
implementation of exponentiation operation in GF(2k). The
proposed method is based on the Montgomery
multiplication algorithm [3] which eliminates the mod n
reduction steps. The result tends to reduce the size of the
timing characteristics. Also Montgomery multiplication
algorithms speed up the computation operation for modular
exponentiations and modular multiplications [8]. The
complexity of classical method for multiplying integers is
O(N2) and the same is applicable for the modulo operation.

Besides for security reasons these algorithms are applied to
very large integers (1024 bits or higher). Other methods
exist to multiply (large) integers. Karatsuba and Ofman [9]
proposed a recursive algorithm, which is about O(N1.58) C.
K. Koc and T. Acar [10] proposed the Montgomery
multiplication in GF(2k), they have used the bit level and
word level algorithms for computing the product. A through
performance analysis and the algorithm comparison is done
with the other standard multiplication algorithm in GF(2k).
J. P. David, K. Kalach, N. Tittley [11] made the comparison of
different Modular Multiplication and Exponentiation
Algorithms.
 S. Yazaki and K. Abe [12] present two design choices of
the Karatsuba hardware: IKM (Iterative Karatsuba
Multiplier) and RKM (Recursive Karatsuba Multiplier). Z.
Dyka Z, P. Langendoerfer [13] proposed a hardware-based
Karatsuba algorithm implementations over a Galois field
(GF), that can used in elliptic curve cryptography and many
other applications. C. McIvor, M. McLoone and J. V.
McCanny [14] proposed a improved Montgomery
multiplication along with associated RSA modular
exponentiation algorithms and designed a circuit
architectures. They modified multipliers to use carry save
adders (CSAs) to perform large word length additions.
Proposed modified Montgomery multiplication algorithms
are suitable for RSA exponentiation, that can overcome
carry propagation problem. The proposal uses a five-to-two
CSA and a four-to-two CSA respectively. Each one can
calculate a Montgomery multiplication in only k + 1 and k +
2 clock cycles, respectively. Here k denotes the operand bit
length. For the empirical analysis of the Montgomery
algorithm in an RSA cryptosystem, Keon-Jik Lee et. al. [15]
made an observation on digit-serial-in-serial-out systolic
multiplier. Due processing speed, their proposed multiplier
can also accommodate bit-level pipelining. It can achieve
sample speeds compared to bit-parallel multipliers with a
lower area. Chin-Bou Liu et. al. [16] made an interesting
observation based on karatsuba multiplication (KM), using
tensor production formulation to express KM algorithm in
both iterative and recursive form. Shand and Vuillemin
applied KM algorithm to the optimal radix choice of
modular product applicable for RSA cryptography [17].
Hollerbach presented a generalization of the Karatsuba’s
algorithm for multiplying very large numbers [18]. D.
Yuliang, M. Zhigang, Y. Yizheng, W. Tao [19] presents a
hardware, implementation of 1024-bit RSA crypto processor
based on Montgomery multiplication algorithm. The
processor can encrypt 1024 bit message in less than 0.65

Sudarsan Biswas et. al., American Journal of Electronics & Communication, Vol. III (3), 16-19

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page Page 16

seconds, with which a 3mm2 die area. That is suitable for
smart IC cards. X. Fang and L. Li [20] introduces classical
Knuth multiplication, Karatsuba multiplication and their
time complexity. Their experimental result shows more
efficiency for implementation of large integer
multiplication. K. Shiann-Rong et. al. designed a
architecture that results Low-cost high-performance for
Montgomery modular multiplication at VLSI domain [21].
D. Jinnan and L. Shuguo presented a low-cost and low-
latency Montgomery modular multiplier based on NLP
multiplication [22]. Z. Bo, C. Zeming and P. Massoud
proposed an Iterative methodology for Montgomery
Modular Multiplication Algorithm with low Area-Time
product [23].
 The paper is organized as the followings. In Section 2, we
presented an overview of the different multiplication
algorithms. Experimental results with input data sets are
presented in Section 3. Performance analysis is reported in
Section 4. Conclusions are in Section 5.

2. MULTIDIGITMULTI DIGIT ALGORITHM
ANALYSIS

2.1 Montgomery Multiplication
 Montgomery multiplication is the key methods of the
modular exponentiation operation. It follows a special
representation of numbers named as
t2 = a1 × b1

10 u = (a0 + a1) × (b1 + b0)
11 t1 = u – t0 – t2

12 return t = t2 × ω 2 + t1 × ω + t0

 This method can be extended to multi-digit long integers
by recursion.
2.3.2 Karatsuba - Ofman recursive Algorithm (KORA)
Function KOMA (a,b)
Input: a, b
Output: t = a × b
0 if (sizeof (a)==32 and sizeof (b)==32)
 return a × b
1 t0=KORMA(a0,b0)
2 t2=KORMA(a1,b1)
3 u=KORMA(a1 + a0,b1 + b0)
4 t1 = u – t0 – t2

5 return t = t2 × ω 2 + t1 × ω + t0

The following simple example will help illustrate the
algorithm
We intend to multiply two integers 5683 by 1148. For
clarity, we will use decimal formalism, so ω=10, m=2.
Initially x and y are split into two equal sized parts as follow
X=a1 ω + a0 and y=b1 ω + b0

X=56×102+83 y=11 × 102 + 48
P0 = a0 × b0 = (83 × 48) = 3984
P2=a1× b1=56× 11= 616
P1=(a0 + a1) (b0+ b1) - P2 - P0

 = (83 + 56) (48 + 11) - 616 - 3984
 =8201- 616 - 3948 =3601
P =p2 ω 2+p1 ω +p0

 =616 × 104+ 3601× 102+ 3984
 =6524084

3. EXPERIMENTAL RESULTS

 We have implemented the Montgomery Karatsuba and
Classical multiplication algorithms. We have run the
implementation with set of integers of different problem size
to obtained execution time. We have executed the
multiplication programs 3000 thousand times and obtained
the average timings for each data set for multiplier and
multiplicand. The different problem sizes are reported in
Table 1. The execution times are also plotted in Table 2.
 To calculate the processor time we used clock () function
which is defined into the header file from the invocation
time of the called process and time measured in const
CLOCKS_PER_SECs. The CPU execution time depends on
many factors. The first one of them is the produced machine
code, which depends on both the high level source code, and
the compiler used. It also depends on the instruction set of
the target processor as well as the number of available
registers in the processor. The compiler has a key role in the
speed of the executed code. An efficient use of the resources
(including the available registers) can speed up the
execution. In this paper, we have simulated three different
multi-digit multiplication algorithms with respect to the
CPU execution time.

4. COMPARATIVE ANALYSIS

In this section, we run the application of above
multiplication algorithms whose input is the large integers
of different problem size and the corresponding CPU
execution time are given into the table 2.
 From Figure-1 it is observed that, the execution time
interval is increasing linearly for both Classical Algorithm
and Karatsuba upon increasing the number of digits. The
performance of the Karatsuba algorithm is going to be
worse compared to Classical algorithm. Moreover,
compared to other two algorithms the execution time taken
for Montgomery algorithm is almost steady instead of
increasing the number of digits. It is observed that for
multiplication of 6 digits, 12 digits and 18 digits numbers
require same execution time. So it may be concluded that,
the execution time will be same for the multiplication of
those numbers, which is a multiple of 6 digits. Furthermore,
up to 4 digits multiplication the execution time is almost
same and shown in table 2. However, for 5 digits and 6
digits multiplication, the execution time is decreasing a
little. The same behavior is observed for the higher order
digits multiplication. So Montgomery algorithm shows a
steady behavior other than the Karatsuba and Classical
algorithm.

Sudarsan Biswas et. al., American Journal of Electronics & Communication, Vol. III (3), 16-19

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page Page 17

Figure 1: Comparison result of different multiplication
algorithm

0.0

0.2

0.4
0.6

0.8

1.0

1.2

1.4
1.6

1.8

2.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

No of digits

T
im

e(
s)

Montgomery

Karatsuba

Classical

 Figure 2 shows that, Karatsuba multiplication is the
slowest of doing multiplication when the problem size is
less than twenty digits, even slower than Classical
multiplication, followed by Montgomery multiplication

Figure 2: Comparison results of different Multiplication
Algorithms.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

No of digits

T
im

e(
s)

Montgomery

Karatsuba

Classical

Table 1: Different input Data sets of Multiplication
Algorithms

MULTIPLICAND MULTIPLIER

8 6

97 58

759 643

8937 7839

97835 82317

983476 783493

9683773 8348734

89786547 67343576

963793649 813745687

9878939849 9748769817

73849657921 63456175327

984126781019 483456187104

4356739143142 3212496278273

83493192142136 45314508132932

736142139212367 248132181231079

6932101437124869 5231428739023671

74312901325583109 32143268730947712

983423821623983407 423456789012345678

6334567842123416718 4334267219123156717

Table 2: Computation time of different Multiplication
algorithms (ms)

No of
digits

Montgomer
y

Karatsuba Classical

1 0.4686667 0.5206667 0.4323333

2 0.4634896 0.5833333 0.4793333

3 0.4688212 0.6820000 0.5886667

4 0.4688195 0.8176667 0.7393333

5 0.3594549 0.8750000 0.7863333

6 0.3644532 0.8596667 0.7656667

7 0.4637882 0.9946667 0.9066667

8 0.4687778 1.0520000 0.9686667

9 0.4688229 1.1666667 1.1043333

10 0.4688229 1.2396667 1.1770000

11 0.3543330 1.2863333 1.2293333

12 0.3544514 1.3440000 1.2813333

13 0.5001182 1.4010000 1.3386667

14 0.5055000 1.4636667 1.3960000

15 0.5105018 1.5103333 1.4476667

16 0.5051702 1.5783333 1.5103333

17 0.5051684 1.7033333 1.6563333

18 0.3488351 1.7033333 1.6406667

19 0.5107830 1.7450000 1.6926667

Table 3: Montgomery multiplication example

i xi xiy0 ui xiy uim A
0 3 3×8=24 4 3444 290556 29400
1 8 8×8=64 4 9184 290556 32914
2 6 6×8=48 2 6888 145278 18508
3 5 5×8=40 8 5740 58112 60536
4 0 0×8=0 6 0 435834 49637

Sudarsan Biswas et. al., American Journal of Electronics & Communication, Vol. III (3), 16-19

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page Page 18

5. CONCLUSIONS

We present the comparison of multi-digit multiplication
algorithms like Montgomery, Karatsuba and Classical
algorithms. Among these three, Montgomery multiplication
algorithm performs large integer modular multiplication
with greater speed and stable timing characteristics up to
twenty digits. This may be applied for the higher digits
multiplication also. Karatsuba and Classical algorithm takes
almost same time for multiplication up to twenty digits but
classical algorithm faster than Karatsuba. With these
techniques, n-bit multiplication which otherwise has a
complexity of O (n2) can be performed with a complexity of
O (nlog3). In future work the enhancement of Montgomery
modular multiplication for Big data security.
Cryptography is an essential task of IoT design. The
Montgomery modular multiplication approach can be
applied for cryptographic approach in IOT devices.

6. REFERENCES

[1] W. Stallings, “Cryptography and Network Security,
Principles and practices” Edition 3d, Pearson Education.
[2] A.Menezes, P.Van Oorschot, and S.Vanstone,
“Handbook of applied Cryptography”, CRC Press, 1996.
[3] P. L. Montgomery, “Modular Multiplication without
Trial Division” Mathematics of Computation, vol. 44, no.
170, pp. 519—521, April 1985.
[4] C.K.Koç, T.Açar and B.S.Kaliski Jr. “Analyzing and
Comparing Montgomery Multiplication Algorithms” IEEE
Micro, June 1996.
[5] J. J. Quisquater, “Encoding system according to the
socalled RSA-method, by means of a microcontroller
andarrangement implementing this system” U.S. Patent
#5,166,978, November 1992.
[6] R. Garg, “An Efficient Montgomery Multiplication
Algorithm and RSA Cryptographic Processor” International
Conference on Computational Intelligence and Multimedia
Applications 2007.
[7] C. K. Koc and T. Acar ,“Fast software exponentiation in
GF(2k)” In Proceeding of Third Annual Workshop on
Selected Area in Cryptography, pages 95-106,Queen’s
University ,Kingston, Ontario, Canada 15-16 1996.
 [8] Thierry Moreau, “Software Acceleration for Public Key
Cryptography” Connotech Experts-conceals Inc, May 1977.
[9] A. A. Karatsuba and Y.Ofman, “Multiplication of
Multi-digit Numbers on Automata” Soviet Physics Doklady,
vol 7, pp.595-596 1963
 [10] C. K. Koc and T. Acar, “Montgomery multiplication in
GF(2k)” In Proceeding of Third Annual Workshop on
Selected Area in Cryptography, pages 95-106, Queen’s
University, Kingston, Ontario, Canada 15-16 1996.
[11] J. P. David, K. Kalach, N. Tittley “Hardware
complexity of Modular Multiplication and Exponentiation”
IEEE transaction on Computers vol. 56, No. 10, October
2007.
 [12] S. Yazaki and K. Abe, “VLSI Design of Karatsuba
Integer Multipliers and Its Evaluation” Electronics and
Communications in Japan, Vol. 92, No. 4, 2009.

[13] Z. Dyka , P. Langendoerfer, “Area efficient hardware
implementation of elliptic curve cryptography by iteratively
applying Karatsuba’s method” Proc of the Design,
Automation and Test in Europe Conference and Exhibition,
Vol. 3, p 70–75, 2005.
[14]. C. McIvor, M. McLoone and J. V.
McCanny ,“Modified Montgomery modular multiplication
and RSA exponentiation techniques” IEE Proc.-Comput.
Digit. Tech., Vol. 151, No. 6, November 2004
[15] K. Lee, K. W. Kim, K. Y.Yoo , “Digit-serial-in-serial-
out systolic multiplier for Montgomery algorithm”
Information Processing Letters 82 (2002) 65–71.
[16] C. Liu, C. Huang, C. L. Lei, “Design and
Implementation of Long-Digit Karatsuba’s Multiplication
Algorithm Using Tensor Product Formulation” The Ninth
Workshop on Compiler Techniques for HighPerformance
Computing.
[17] M. Shand and J. Vuillemin, “Fast implementations of
RSA cryptography” In Proc. of the 11th IEEE
Symposiumon Computer Arithmetic, pages 252–259,1993
[18] U. Hollerbach, “Fast multiplication & division of very
large numbers” InSci. Math .Research Posting , 1996.
[19] D.Yuliang, M.Zhigang, Y. Yizheng, W. Tao
“Implementation of RSA Crypto-processor Based on
Montgomery algorithm”
[20] X. Fang, L. Li, “On Karatsuba Multiplication
Algorithm” IEEE computer socity ©2007 IEEE DOI
10.1109/ISDPE.2007.11
[21] K. Shiann-Rong ,W. Kun-Yi and L. Ren-Yao, “Low-
cost high-performance VLSI architecture for Montgomery
modular multiplication ” , IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol 24, no. 2,
pages 434–443, 2015.
[22] D. Jinnan and L. Shuguo, “ A low-latency and low-cost
Montgomery modular multiplier based on NLP
multiplication” IEEE Transactions on Circuits and Systems
II: Express Briefs , vol 67, pages 1319–1323, 2019.
[23] Z., Bo, C. Zeming and P. Massoud, “ An Iterative
Montgomery Modular Multiplication Algorithm With Low
Area-Time Product ” IEEE Transactions on Computers,
2022.

Sudarsan Biswas et. al., American Journal of Electronics & Communication, Vol. III (3), 16-19

AJEC | January, 2023 | © SMART SOCIETY | (www.ajec.smartsociety.org) Page Page 19

