

Anisha Saha et. al., American Journal of Electronics & Communication, Vol. IV (2), 1-6

## A Comparative Study to Predict Polycystic Ovarian Syndrome (PCOS) Based on Different Models of Machine Learning Technique

<sup>1</sup>Anisha Saha, <sup>2</sup>Aporna Roy, <sup>3</sup>Barsha Chakraborty, <sup>4</sup>Bidisha Saha, <sup>5</sup>Dipwanita Chowdhury [anisha.sahaiembca2023, royaporna4, cbarsha119, bidishasaha50864, dipwanitachowdhury]@gmail.com BCA 3<sup>rd</sup> Year, IEM, Kolkata

> <sup>6</sup>Prof. Manab Kumar Das, <sup>7</sup>Prof. Soham Goswami [manab.das, soham.goswami]@iem.edu.in Assistant Professor, IEM, Kolkata

Abstract - Polycystic ovarian syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age worldwide, characterized by excess production of androgens. This can result in ovarian abnormalities and a range of associated health risks, including infertility, heart issues, diabetes, and uterine cancer. However, the diagnosis of PCOS can be challenging due to the varied symptoms in different women and the time and cost involved in biochemical tests and ovarian scanning. To address this, researchers have proposed a method that predicts the likelihood of PCOS based on a minimal set of criteria, including weight, BMI, cycle length, and hormone levels. Using five machine learning algorithms, they tested the method on a dataset of 541 patients and found that the Random Forest and Support Vector Machine models had the highest accuracy in predicting PCOS. Such a system could aid in early detection and encourage individuals at risk to seek medical attention. Dataset is split into a 70/30 ratio, meaning that 70% of the dataset's data are used to train the model and 30% are used to test it. In this paper, we suggested a novel stack model with a 90% accuracy that is composed of four machine learning classifiers: Random Forest, Support Vector Machine, Naive Bayes, and Logistic Regression. Testing data accuracies for the models of Logistic Regression, Random Forest, Support Vector Machine, K Nearest Neighbor, Naive Bayes, Stack Model are 88%, 91%, 90%, 69%, 86% and 90% respectively. As a result, the models with the highest accuracy on the testing data are the Random Forest model and Stack Model.

Keywords – Machine Learning Algorithms, PCOS, Ensemble Learning, Feature Selection, PRASOON KOTTARATHIL Dataset.

#### I. INTRODUCTION

Polycystic Ovary Syndrome (PCOS) is a medical condition which causes hormonal disorder in women in their childbearing years. In the case of PCOS, ovaries can bulge and sometimes may have multiple small cyst formations (immature follicles). PCOS women have high levels of male hormones and insufficient female hormones, leading to alteration in their menstrual cycle or even absent menstrual cycle. Women with PCOS majorly suffer from excessive weight gain, facial hair growth, acne, hair loss, skin darkening and irregular periods leading to infertility. The healthcare industry could undergo numerous revolutions because of artificial intelligence (AI). AI's capacity to analyze massive amounts of data correctly and rapidly is a key advantage. This enables medical workers to make better choices about patient care, such as individualized treatment plans and quicker evaluations. AI can also help with medical imagery by offering more precise and effective picture analysis, which lowers the chance of misdiagnosis. Additionally, realtime patient health monitoring by AI-powered gadgets enables early identification of possible health issues and prompt medical assistance. AI can also aid in the finding of new drugs by analyzing vast quantities of data and spotting potential treatments that may have gone unnoticed. Overall, AI has the potential to boost productivity, lower expenses, and enhance service quality in the healthcare industry.

The general factors of PCOS such as heredity, fast food, diet habits, involvement in physical exercise, BMI etc. The long-term effects of polycystic ovaries can cause significant ailments such endometrial hyperplasia, coronary disease, and type 2 diabetes mellitus. Studies have shown that it can also result in various malignancies including uterine or breast cancer in women who are fertile. Identifying PCOS is tricky due to all these manifestations, gynecological, clinical and metabolic parameters involved in diagnosing it. So, the time and financial expenses have become a hardship to the patients.

Our contributions in this paper-

- By integrating the Random Forest, Support Vector Machine, Naive Bayes, and Logistic Regression models, we have created a stack model that provides 97% accuracy on training datasets and 90% accuracy on testing datasets.
- Additionally, we compared the accuracies of Logistic Regression, Random Forest, Support Vector Machine, K Nearest Neighbor, and Naive Bayes model and the most accurate model was the random forest one.
- We used the Prasoon Kottarathil Dataset for our research and also preprocessed the data by managing null values and extracting features using methods like Pearson's correlation coefficient and the k-best

algorithm approach to improve the performance of our models.

## II. LITERATURE SURVEY

This study provides an in-depth analysis of PCOS and explores the use of image processing and machine learning techniques to aid in its diagnosis and potential automation. A range of analytical techniques have been utilized to detect and analyze PCOS.

The intention for conducting PCOS research is multifaceted, and can include addressing a major public health issue, advancing scientific knowledge, developing personalised care, and improving patient health outcomes. PCOS research can aid in the identification of risk factors, biomarkers, and other indicators that predict the development of PCOS, allowing for earlier interventions and personalised treatment plans. The ultimate goal is to improve the quality of life for women suffering from PCOS. To gain a comprehensive understanding of PCOS, it is necessary to reference established diagnostic criteria and standards.

M. Sumathi et al. [1] constructed a CNN image processing model for disease classification using ultrasound images. Feature extraction was performed using the watershed algorithm, and parameter measurement was carried out using OpenCV. The model achieved a high accuracy of 85% based on performance factors. Irfan Talib et al. [2] found that elevated insulin levels are a leading factor in the development of PCOS. Their study examined the diverse effects of insulin resistance in women with polycystic ovaries. R.M.Dewi et al. [3] proposed a method to accurately classify polycystic ovaries using ultrasound images. The authors employed a combination of feature extraction techniques, specifically the Wavelet method, and a Convolutional Neural Network (CNN) to identify the unique characteristics of the ultrasound data. The results of the system testing indicated that the CNN achieved the highest accuracy of 80.84% in accurately identifying the polycystic ovaries.

| AUTHORS        | OBJECTIVES        | RESEARCH        | RESULTS           |
|----------------|-------------------|-----------------|-------------------|
|                |                   | DESIGN          |                   |
| S. Sreejith et | In order to help  | Utilized a      | In terms of       |
| al.[2022][4]   | physicians        | random forest   | accuracy,         |
|                | monitor           | classifier to   | sensitivity, and  |
|                | Polycystic        | analyze the     | specificity, the  |
|                | Ovarian           | characteristics | proposed          |
|                | Syndrome, this    | after using     | methodology       |
|                | study creates a   | the red deer    | (RF+RDA)          |
|                | clinical decision | method to       | performs better   |
|                | support system    | identify the    | than existing     |
|                | (PCOS).           | best ones.      | wrapper           |
|                |                   |                 | approaches        |
|                |                   |                 | employing RF and  |
|                |                   |                 | conventional      |
|                |                   |                 | classifiers, with |
|                |                   |                 | scores of 89.81%  |
|                |                   |                 | accuracy, 90.43%  |
|                |                   |                 | specificity, and  |
|                |                   |                 | 89.73%            |
|                |                   |                 | sensitivity.      |

| M A              | A method for             | KNN, Linear      | The random forest                      |
|------------------|--------------------------|------------------|----------------------------------------|
| Anusuya et       | assessing and            | Regression,      | approach                               |
| al.[2020][5]     | tracking                 | and Random       | outperforms the                        |
|                  | symptoms that            | Forest are       | algorithms by                          |
|                  | of having PCOS           | machine          | averaging lower                        |
|                  | to be predicted          | learning         | error levels                           |
|                  | based on                 | supervised       | (average MAE                           |
|                  | characteristics          | classification   | and RMSE values                        |
|                  | like testosterone        | algorithms       | of 1.99 and 3.10,                      |
|                  | family history           | been utilized    | the highest R <sup>2</sup>             |
|                  | Obesity, etc.            | for prediction   | values (average                        |
|                  |                          | tasks.           | 0.985).                                |
| B Rachana et     | Discovering a            | The              | It is feasible to                      |
| al.[2021][6]     | way to detect            | suggested        | demonstrate that                       |
|                  | PCOS in its              | technique        | the KNN classifier                     |
|                  | avert additional         | KNN              | nas an accuracy of<br>nearly 97% which |
|                  | difficulties.            | classifier.      | is higher than any                     |
|                  |                          | which is         | classifier that has                    |
|                  |                          | primarily        | previously been                        |
|                  |                          | focused on       | suggested.                             |
|                  |                          | decreasing a     |                                        |
|                  |                          | flaws and        |                                        |
|                  |                          | classification   |                                        |
|                  |                          | is done using    |                                        |
|                  |                          | the KNN          |                                        |
|                  |                          | algorithm.       |                                        |
| Vaidehi          | A method that            | Random           | Of the four, the                       |
| et al [2020]     | therapy for PCOS         | Logistic         | Classifier was                         |
| [7]              | based on an ideal        | Regression,      | found to be the                        |
|                  | and minimum set          | Gaussian         | most trustworthy                       |
|                  | of characteristics       | Naive Bayes,     | and accurate, with                     |
|                  | has been                 | and KNN are      | an accuracy rate                       |
|                  | presented.               | the five         | of 90.9%.                              |
|                  |                          | that were        |                                        |
|                  |                          | tested to        |                                        |
|                  |                          | predict          |                                        |
|                  | <b>T</b> 1 4 4           | PCOS.            | 751 1 . 1 1                            |
| A.K.M.<br>Salman | 10 detect                | For the          | The best model                         |
| Hosain et        | Syndrome(PCOS)           | classifying      | PCONett, which                         |
| al.[2022][8]     | using                    | data, they had   | has an accuracy                        |
|                  | Convolutional            | created the      | rate of 93.93%.                        |
|                  | Neural Network           | pre-trained      |                                        |
|                  | from Overian             | model            |                                        |
|                  | Ultrasound               | and the CNN      |                                        |
|                  | Images                   | model            |                                        |
|                  |                          | PCONet to        |                                        |
|                  |                          | identify         |                                        |
|                  |                          | ovarian cysts    |                                        |
|                  |                          | images.          |                                        |
| Amsy Denny       | Machine                  | Used Logistic    | The best                               |
| et               | Learning-Based           | regression       | performance was                        |
| al.[2019][9]     | Diagnosis and            | and six other    | given by Random                        |
|                  | Prediction<br>System For | algorithms       | Forest Classifier                      |
|                  | Polycystic Ovary         | Linear           | accuracy of 89 %                       |
|                  | Syndrome                 | Discriminate     | was achieved after                     |
|                  | (PCOS)                   | Analysis,        | data optimization.                     |
|                  |                          | KNN, CART,       |                                        |
|                  |                          | RFC, NBC,        |                                        |
| Kinial Pout      | Machina                  | SVM.<br>Decision | Comparing                              |
| et               | Learning                 | Tree, SVC.       | CatBoostClassifier                     |
| al.[2022][10]    |                          | Random           | to other models, it                    |

| Algorithms for  | Forest,        | has excelled and  |
|-----------------|----------------|-------------------|
| PCOS Detection. | Logistic       | achieved the      |
|                 | Regression, K  | greatest accuracy |
|                 | Nearest        | of 94.64%.        |
|                 | Neighbor,      |                   |
|                 | XGBRF, and     |                   |
|                 | CatBoost       |                   |
|                 | Classifier are |                   |
|                 | the methods    |                   |
|                 | used to build  |                   |
|                 | the model.     |                   |

Table-1: Summary of Literature Review

#### III. METHODOLOGY



Fig-1: The flowchart of the entire process, from data gathering to precision getting

#### Proposed Algorithm: -

#### Step 1: Dataset Description: -

Polycystic ovary syndrome (PCOS) is a condition characterized by menstrual irregularities and high levels of male hormones. It is a significant contributor to infertility in women. To develop an accurate diagnostic model for PCOS, a combination of clinical and non-clinical data is needed. The dataset used in this study comprises data from 541 patients with and without fertility issues who were diagnosed with PCOS. The data was collected from 10 different hospitals in Kerala, India and is available in the Kaggle database. Table 1 provides a detailed description of the parameters that are included in the dataset.

| S1 No                                 | Parameter name         | Description                                                    |
|---------------------------------------|------------------------|----------------------------------------------------------------|
| 1                                     |                        | Description<br>Patient's age in years                          |
| 2                                     | Weight                 | Patient's weight in Ira                                        |
| 2                                     |                        | Patient's weight in kg                                         |
| 3                                     | Height                 | Patient's neight in cm                                         |
| 4                                     | BMI                    | Body mass index                                                |
| 5                                     | Blood group            | Blood group                                                    |
| 6                                     | Pulse Rate             | Pulse rate in beats per minute                                 |
| 7                                     | RR                     | Respiratory rate in breaths per minute                         |
| 8                                     | Hb                     | Haemoglobin counts in grams per decilitre                      |
| 9                                     | Cycle (R/I)            | Whether cycle is regular (2) or not(4)                         |
| 10                                    | Cycle length(days)     | Number of days of menstruation                                 |
| 11                                    | Marriage Status (Yrs.) | Number of years since marriage                                 |
| 12                                    | Pregnant(Y/N)          | Whether pregnant (1)<br>or not(0)                              |
| 13                                    | No. of abortions       | Number of abortions                                            |
| 14                                    | I beta-HCG(mIU/mL)     | Amount of beta human<br>chorionic<br>gonadotropin              |
| 15                                    | II beta-HCG(mIU/mL)    | Amount of beta human<br>chorionic                              |
| 16                                    | FSH(mIU/mL)            | Amount of follicles<br>stimulating hormone                     |
| 17                                    | LH(mIU/mL)             | Amount of Luteinizing hormone                                  |
| 18                                    | FSH/LH                 | Ratio of FSH to LH                                             |
| 19                                    | Hip(inch)              | Hin size in inches                                             |
| 20                                    | Waist(inch)            | Waist size in inches                                           |
| 21                                    | Waist: Hip Ratio       | Waist to hip ratio                                             |
| 22                                    | TSH (mIU/L)            | Amount of Thyroid                                              |
| 23                                    | AMH (ng/mL)            | Amount of Anti<br>Mullerian hormone                            |
| 24                                    | PRL (ng/mL)            | Amount of Prolactin                                            |
| 25                                    | Vit D3 (ng/mL)         | Amount of Vitamin D3                                           |
| 26                                    | PRG (ng/mL)            | Amount of                                                      |
| 27                                    | PBS (mg/dl)            | Progesterone<br>Random Blood                                   |
|                                       | KBS (mg/m)             | Glucose                                                        |
| 28                                    | Weight gain(Y/N)       | Whether the patient gained weight (1) or not (0)               |
| 29                                    | hair growth(Y/N)       | Whether the patient<br>had hair growth (1) or<br>not (0)       |
| 30                                    | Skin darkening (Y/N)   | Whether the patient<br>had skin darkening (1)<br>or not (0)    |
| 31                                    | Hair loss(Y/N)         | Whether the patient<br>experienced hair loss<br>(1) or not (0) |
| 32                                    | Pimples(Y/N)           | Whether the patient<br>has pimples (1) or not<br>(0)           |
| 33                                    | Fast food (Y/N)        | Whether the patient<br>consumes fast food (1)<br>or not (0)    |
| · · · · · · · · · · · · · · · · · · · |                        |                                                                |

| 34 | RegExercise(Y/N)     | Whether the patient<br>exercises regularly (1)<br>or not(0) |  |
|----|----------------------|-------------------------------------------------------------|--|
| 35 | BP_Systolic (mmHg)   | Systolic pressure                                           |  |
| 36 | BP_Diastolic (mmHg)  | Diastolic pressure                                          |  |
| 37 | Follicle No. (L)     | No: of follicles in the left ovary                          |  |
| 38 | Follicle No. (R)     | No: of follicles in the right ovary                         |  |
| 39 | Avg. F size (L) (mm) | Average size of follicles in the left ovary                 |  |
| 40 | Avg. F size (R) (mm) | Average size of follicles in the left ovary                 |  |
| 41 | Endometrium (mm)     | Thickness of the endometrium                                |  |
| 42 | PCOS(Y/N)            | Diagnosed with PCOS<br>(1) or not(0)                        |  |

Table-2: A complete list of the dataset's characteristics

The dataset comprises numerical and categorical data, with physical parameters including age, weight, height, BMI, waist and hip dimensions, hair growth, hair loss, skin darkening, and pimples. The dataset also includes clinical parameters such as blood group, Vitamin D3 levels, pulse rate, respiration rate, hemoglobin count, cycle regularity, glucose levels, hormone levels, blood pressure, follicle count, follicle size, and endometrial thickness.

## Step 2: Data Preprocessing: -

Preparing data for machine learning requires dealing with missing data, categorical variables, scaling features, and selecting important features. In this study, missing values in the dataset were replaced with 0 to ensure that the model can process the data. Before being fed into the model, samples with missing values were either removed or replaced with pre-built estimators.

## Step 3: Feature Selection: -

Feature selection is a crucial step in building a ML model, as it can improve its performance by removing irrelevant features and reducing data dimensionality and algorithmic difficulty. The K-best algorithm selects top k features from a dataset based on their statistical scores. It's a filter-based approach that uses statistical tests to rank each feature. Top k features with highest scores are selected and rest are removed, reducing data dimensionality, and improving machine learning model efficiency and accuracy. Various methods such as Pearson's correlation coefficient, Chi-square test, mutual information, and Fisher's test can be used to evaluate the relationship between each input feature and the class variable to select the features that exhibit a strong relation. The best 20 features in this research were chosen using the K-best algorithm and Pearson's correlation coefficient approach.

## 1. Pearson's Correlation approach: -

Pearson correlation is a measure of the linear correlation between two variables. It is commonly used in machine learning to determine the strength and direction of the relationship between two numerical variables. The Pearson correlation coefficient, denoted as "r", ranges from -1 to 1, where -1 indicates a perfect negative correlation, 0 indicates no correlation, and 1 indicates a perfect positive correlation.

Pearson correlation is often used in feature selection, where the correlation between each feature and the target variable is calculated and features with a low correlation are removed from the dataset. In this study the correlated features like BMI, FSH/LH, Waist(inch) are dropped after identifying using Pearson's Correlation approach.



**Fig-2**: The dataset's entire feature correlation matrix is displayed in this image. Features that correlate most strongly are depicted by dark colours, while those that correlate least strongly are depicted by pale colours.

## 2. K-Best Algorithm approach: -

The K-best algorithm is a feature selection method in machine learning that selects the K best features from a larger set of features. This algorithm ranks the features based on their importance scores and selects the top K features with the highest scores.

The importance scores of the features are typically calculated using statistical methods such as mutual information, correlation coefficient, or chi-squared test.

|    | Features             | Score       |
|----|----------------------|-------------|
| 24 | Vit D3 (ng/mL)       | 9477.648952 |
| 13 | I beta-HCG(mIU/mL)   | 6950.525631 |
| 16 | LH(mIU/mL)           | 2558.471157 |
| 15 | FSH(mIU/mL)          | 1601.143311 |
| 14 | II beta-             | 949.362075  |
|    | HCG(mIU/mL)          |             |
| 37 | Follicle No. (R)     | 672.789402  |
| 36 | Follicle No. (L)     | 573.647927  |
| 22 | AMH(ng/mL)           | 233.210799  |
| 17 | FSH/LH               | 96.831682   |
| 29 | Skin darkening (Y/N) | 84.870716   |
| 28 | Hair growth(Y/N)     | 84.854623   |
| 27 | Weight gain(Y/N)     | 65.554147   |
| 1  | Weight (Kg)          | 49.466423   |
| 32 | Fast food (Y/N)      | 37.721883   |

| 8  | Cycle(R/I)            | 27.681419 |
|----|-----------------------|-----------|
| 25 | PRG(ng/mL)            | 24.638020 |
| 31 | Pimples(Y/N)          | 22.587803 |
| 10 | Marraige Status (Yrs) | 22.181398 |
| 3  | BMI                   | 14.568227 |
| 0  | Age (yrs)             | 14.284370 |
| 30 | Hair loss(Y/N)        | 8.846546  |

 Table-3: Top 21 features in the collection, ranked and scored using the K-best feature selection algorithm

| PCOS         | Features                                                  |
|--------------|-----------------------------------------------------------|
| Dataset      |                                                           |
| Total no. of | 44                                                        |
| Features     |                                                           |
| Selected no. | 21                                                        |
| of features  | Weight (Kg), Cycle(R/I),I beta-HCG(mIU/mL), II beta-      |
| and their    | HCG(mIU/mL),FSH(mIU/mL),LH(mIU/mL),FSH/LH,AM              |
| names        | H(ng/mL),Vit D3 (ng/mL),PRG(ng/mL), Weight gain, hair     |
|              | growth(Y/N),Skin darkening (Y/N), Hair                    |
|              | loss(Y/N),Pimples(Y/N),Fast food (Y/N),Follicle No.       |
|              | (L),Follicle No. (R),Avg. F size (L) (mm),Avg. F size (R) |
|              | (mm),Endometrium (mm)                                     |
|              |                                                           |

Table-4: Collection of finalized feature values for machine learning models

*Step 4: Training and testing dataset splitting:* 

Splitting the pre-processed dataset into training and testing sets is a standard practice to evaluate the predictive model's performance. The training set is used to train and tune the model, while the test set is kept aside as "new" data to evaluate the model's prediction ability on unseen data. The model's performance is validated using cross-validation on the training set.

| Training Data | Testing Data |
|---------------|--------------|
| 70%           | 30%          |

Table-5: Training & Testing dataset splitting

Step 5: Model Selection: -

A study was conducted to establish a baseline using a selected set of features in several classifier algorithms. From the vast number of existing machine learning algorithms, only those that have been demonstrated to provide the best results in detecting PCOS and non-PCOS conditions are utilized and listed below.

- 1) Random Forest Classifier
- 2) Support Vector Machine
- 3) Stack Model (Ensemble approach of four ML Models)
- 4) Naïve Bayes Classifier
- 5) Logistic Regression (LR)
- 6) K-nearest neighbors (KNN)

| Classifiers                                                      | Accuracy on<br>Training Dataset | Accuracy on Testing<br>Dataset |
|------------------------------------------------------------------|---------------------------------|--------------------------------|
| Random Forest                                                    | 100%                            | 91%                            |
| Support Vector<br>Machine                                        | 92%                             | 90%                            |
| Stack Model (RF +<br>SVM + Naïve Bayes +<br>Logistic Regression) | 97%                             | 90%                            |
| Logistic Regression                                              | 86%                             | 88%                            |
| K-Nearest Neighbor                                               | 80%                             | 69%                            |
| Naïve Bayes                                                      | 85%                             | 86%                            |





Fig-3: Accuracy graph of various classifiers along with proposed model

# Proposed Stack Model (Four ML models are learned collectively for increased precision): -

In machine learning, a stack model, also known as a stacked generalization or stacked ensemble, is a technique that combines multiple predictive models to improve overall accuracy and reduce variance. The basic idea behind a stack model is to train several individual models on the same dataset, and then use a meta-model to combine the predictions of the individual models. The meta-model can be trained on the same dataset, using the predictions of the individual models as input features, or it can be trained on a separate holdout dataset. To improve accuracy, we have combined four algorithms (Random Forest, Naïve bayes, Support Vector Machine and Logistic Regression) in this research.

## Highest Accuracy: -

With accuracies of 91%, 90%, and 90% on the test dataset, the top three algorithms are Random Forest, SVM, and our proposed Stack model (Random Forest + Support Vector Machine + Naïve Bayes + Logistic Regression).

When it comes to accuracy, Random Forest Classifier is the best.

## **IV. RESULT & DISCUSSION**

A total of 541 cases, which were gathered from different Thrissur infertility treatment facilities, were available for the research.

Accuracy score, confusion matrix, F1 score, precision, and recall are used to evaluate the performance of different models.

| Algorithm<br>used                     | Precision | Recall | F1-score | Support |
|---------------------------------------|-----------|--------|----------|---------|
| Random<br>Forest                      | 0.93      | 0.91   | 0.92     | 163     |
| Logistic<br>Regression                | 0.90      | 0.89   | 0.89     | 163     |
| Support<br>Vector<br>Machine<br>(SVM) | 0.91      | 0.91   | 0.91     | 163     |
| K Nearest<br>Neighbor                 | 0.77      | 0.69   | 0.72     | 163     |
| Naïve Byers                           | 0.90      | 0.87   | 0.87     | 163     |

Table-7: Precision,F1 score and recall of different models along with proposed model

| 18 | 0 | input_date_n = (68.8,2,494.08,494.08,5.54,9.88,6.3,6.63,49.7,0.36,0,0,0,1,1,1,13,15,15,20,10)                                                                           |
|----|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |   | # change the input data to a numpy array                                                                                                                                |
|    |   | input_data_as_numpy_array_n+ mp.asarray(input_data_n)                                                                                                                   |
|    |   | # reshape the numpy array as we are predicting for only on instance                                                                                                     |
|    |   | input_data_reshaped_n = input_data_as_numpy_array_n.reshape(1,-1)                                                                                                       |
|    |   | prediction_n = stack_model.predict(input_data_reshaped_n)                                                                                                               |
|    |   | print(prediction)                                                                                                                                                       |
|    |   | if (prediction_n[0]== 0):                                                                                                                                               |
|    |   | print('The Person does not have a PCOS')                                                                                                                                |
|    |   | else:<br>print('The Person has PCOS')                                                                                                                                   |
|    | D | [1]                                                                                                                                                                     |
|    |   | The Person has PCOS<br>/usr/local/lib/python3.9/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but SVC was fitted with feature na |
|    |   |                                                                                                                                                                         |
|    |   |                                                                                                                                                                         |

Output Screenshot-1: Prediction result of Stack model

#### CONCLUSION

To create awareness among the women we decided to create a prediction model to detect PCOS in its early stages. We developed a model using a Kaggle dataset with 20 features to detect PCOS in its early stages with 91% accuracy. The system we have developed can help doctors identify potential patients and give PCOS patients priority. In the future, it will be possible to use CNN to identify ovarian cancer in women with PCOS, who have a higher risk of developing the disease. The results of this study have substantial ramifications for improving early detection and treatment of PCOS, which can have detrimental effects on women's health and wellbeing.

## REFERENCES

- Sumathi, M., Chitra, P., Sakthi Prabha, R., & Srilatha, K., "Study and detection of PCOS related diseases using CNN", IOP Conference Series: Materials Science and Engineering, vol. 1070, 2021.
- [2] Talib, I., Khadija, S., Khan, A. M., Akram, S., Akhtar, M. K., Willayat, F., & Iftikhar, A., "Prediction a woman having Polycystic Ovary Syndrome (PCOS) those having Insulin Resistance (IR)", Pakistan Journal of Medical and Health Sciences, vol. 16, no. 2, pp. 6–9, 2022.
- [3] Dewi, R & Adiwijaya, Kang & Wisesty, Untari Novia & Jondri, "Classification of polycystic ovary based on ultrasound images using competitive neural network", Journal of Physics: Conference Series, vol. 971, 2018.
- [4] Sreejith, S., Khanna Nehemiah, H., & Kannan, A., "A clinical decision support system for polycystic

ovarian syndrome using red deer algorithm and random forest classifier", Healthcare Analytics, vol. 2, 2022.

- [5] Pushkarini, H., & Anusuya, M. A., "A prediction model for evaluating the risk of developing PCOS", Journal of Medical Systems, vol. 44, no. 3, pp. 1-9, 2020.
- [6] B Rachana., Priyanka, T., Sahana, K. N., Supritha, T. R., Parameshachari, B. D., & Sunitha, R., "Detection of polycystic ovarian syndrome using follicle recognition technique", Global Transitions Proceedings, vol. 2, no. 2, pp. 304-308, 2021.
- [7] Vedpathak, S. & Thakre, V., "PCOcare: PCOS Detection and Prediction using Machine Learning Algorithms", Bioscience Biotechnology Research Communications, vol. 13, pp. 240-244, 2020
- [8] Salman Hosain, A.K.M., Mehedi, M.H. and Kabir, I.E., "PCONet:A convolutional neural network architecture to detect polycystic ovary syndrome (PCOS) from ovarian ultrasound images", International Conference on Engineering and Emerging Technologies (ICEET), 2022.
- [9] Denny, A. & Raj, A. & Ashok, A. & Ram, M.& George, R., "i-HOPE: Detection And Prediction System For Polycystic Ovary Syndrome (PCOS) Using Machine Learning Techniques", pp. 673-678,2019.
- [10] Raut, K., Katkar, C., & Itkar, S. A., "PCOS Detect using Machine Learning Algorithms", International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 6, pp. 1376-1381,2020.