
1

Breaking Down Break-It-Fix-It: An Automated
Software Repair Replication

Jason M. Pittman∗†, Kira Concotta∗, and Rebecca Saul∗
∗Booz Allen Hamilton, McLean, VA 30332 USA

†University of Maryland Global Campus, Adelphi, USA

Abstract—Software quality is strongly correlated with the
quantity and severity of bugs. While there are a variety of
tools, techniques, and practices to aid production of robust and
resilient code, low quality software is draining trillions of dollars
from organizations annually. Meanwhile, debugging and fixing
coding errors consumes upwards of half of developer labor. To
say this situation is untenable is an understatement. Fortunately,
automated software repair offers a possible solution. The liter-
ature around automated code fixing has been expanding with a
variety of implementations ranging from genetic programming,
code translation, and various machine learning algorithms. All
report positive results, however there has not yet been a dedicated
effort to measure to what extent the various implementations are
generalizable. Accordingly, we sought to replicate a prominent
study in the field in two parts. The first part consisted of
replicating the training of the machine learning model using
the source study materials. We found training to be impossible
at first due to package dependencies and missing package files.
However, we were able to replicate the self-repair evaluation.
The results were identical to the source study. Later, using a
Docker compose file obtained from the original authors, we
were able to replicate BIFI model training and again match
outcomes. Overall, based on the replication outcomes, we offer
future leaning recommendations and ideas for future work.

Index Terms—software and engineering, automated software
repair, deep learning, replication.

I. INTRODUCTION

SOFTWARE Software quality is strongly correlated with
the quantity and severity of bugs. Further, software quality

is commonly understood to be a measure of design practices,
errors per line of code, and testing acumen Misra & Bhavsar
(2003); Abuasad & Alsmadi (2012); Alves et al. (2016). As
it stands, poor quality software led to losses of 2.41 trillion
USD in 2022 McGuire (2022). In light of these facts, it
is natural to wonder why industry simply does not produce
more high quality software. In fact, there are a variety of
tools, techniques, and practices to aid developers and engineers
in product robust and resilient code. However, automation
is limited in two critical areas: debugging and generating
code repairs (i.e., patches) Tufano et al. (2019); Xia et al.
(2022). Bugs and vulnerabilities alike can take days to isolate,
especially in large projects Alhefdhi et al. (2020). Manual
debugging and patching are notoriously tedious job tasks.
Often, software developers spend upwards of 50% of their
time debugging Britton et al. (2013). Moreover, such manual

Manuscript received May 4, 2023; Corresponding author: J. M. Pittman
(email: pittman jason@bah.com).

interventions have a nonzero probability of regressing source
code or introducing new bugs and vulnerabilities.

Automated software repair Harman (2010); Le Goues et al.
(2013) is one possible solution to the burden of such manual
processes. Indeed, there have been a variety of proposed soft-
ware self-repair implementations such as GenProg Le Goues
et al. (2013), Angelix Mechtaev et al. (2016a), and Neural
Machine Translation Tufano et al. (2019) techniques. More
recently, Yasunaga and Liang introduced Break-It-Fix-It (BIFI)
Yasunaga & Liang (2021). This study is of particular interest
for three reasons. The authors offered a detailed description of
their self-repair implementation. The work also referenced a
full GitHub repository containing source training data, BIFI
code, and trained models. As well, Yasunaga and Liang
specifically recommend future work explore to what extent
BIFI generalizes to other domains. However, Xia et al. Xia et
al. (2022) noted existing literature and the demonstrated self-
repair paradigms therein may have limited generalizability.

One means to explore the generalizability of existing work is
to reproduce the source study. Logically, a replication to verify
results should precede reproduction though Plesser (2018). The
process of replication involves duplicating a research study
using the same techniques, materials, and experimental setup
Lindsay & Ehrenberg (1993); Brooks et al. (1996); Gómez et
al. (2010); Plesser (2018). The purpose is to verify the results
and increase trust in their accuracy and consistency. However,
replication is only feasible if the original research provides a
thorough description of the materials, setup, and equipment
used, enabling another researcher to carry out an identical
investigation. In contrast, reproduction encompasses the act
of recreating a study using various instruments, data sets,
or techniques, with the objective of showing that the results
are not specific to one particular implementation and can be
generalized Lindsay & Ehrenberg (1993); Brooks et al. (1996);
Gómez et al. (2010); Plesser (2018). Additionally, reproducing
a study can also uncover any shortcomings or drawbacks in the
original methodology. Accordingly, the purpose of this work is
to provide a rigorous, scientific replication of BIFI Yasunaga
& Liang (2021).

The rest of this work is organized into four sections. First,
we offer summaries of seminal and relevant related work. Do-
ing so establishes a conceptual framework for this study. Then,
we describe our replication method and how the scientific
inquiry present in this work emerged during the replication.
Next, we present the qualitative and quantitative results of
the replication. This is followed by our recommendations and



2

ideas for future work.

II. BACKGROUND

We need to describe three general areas of related work to
properly situate this study in the literature. First, we discuss
automated software repair as a field of study. In doing so, we
establish a foundation for conceptualizing the dominant lines
of inquiry present in the literature. Next, we expand on the
specific background related to Yasunaga and Liang Yasunaga
& Liang (2021). In this regard, we aim to highlight results and
conclusions for comparison after the replication is completed.
Last, we provide an overview of scientific replication. The
overview will make clear why replication is vital to the field
and how software engineering is best replicated.

A. Automated Software Repair

In order to reduce the amount of time developers spend
manually identifying and patching bugs, a variety of tech-
niques have been devised to conduct automatic software
repair. Here we briefly review the three major approaches
in this field: search-based repair, semantics-based repair, and
learning-based repair.

1) Search-Based: Search-based approaches to automatic
software repair rely on syntactic analyses of the underlying
buggy program. Based on the syntax of the original code,
these methods first generate large pools of candidate patches
for a given bug via processes like source manipulation or
modification of abstract syntax trees Ding et al. (2019). Then
the search space is traversed to identify the best patch from
the pool of candidates, either randomly or using heuristic or
other optimization strategies, including genetic programming.
A patch is presumed to be successful if it passes a suite
of provided test cases. Many search-based algorithms for
software repair have been proposed Le Goues et al. (2012); Liu
et al. (2018); Mehne et al. (2018); Qi et al. (2014); a common
challenge faced by these programs is that as the search space
expands, it can become very difficult to navigate effectively
Le et al. (2018).

2) Semantics-Based: In contrast to search-based ap-
proaches, semantics-based approaches begin with a semantic,
rather than syntactic, analysis of the original code. These meth-
ods use information derived from evaluation against test suites
and symbolic execution to establish semantic constraints,
which are then used to guide the generation of possible repairs
Le et al. (2018). These repairs are constructed using pro-
gram synthesis techniques like template-based synthesis and
component-based synthesis. While semantics-based methods
offer greater precision when compared with their search-based
counterparts, they are inherently limited by the power of the
underlying semantic analyzers Ding et al. (2019). In addition,
like search-based algorithms, semantics-based algorithms con-
sider a patch to be correct if it passes every case in the test
suite. This means that both approaches are prone to produce
patches that are overfit to the test suite, which is usually
incomplete. Some popular semantics-based automatic software
repair programs include Angelix Mechtaev et al. (2016b) and
SemFix Nguyen et al. (2013).

3) Learning-Based: In recent years, a third approach to
automatic software repair has taken root, driven by the en-
trance of machine learning researchers to this field of study.
Deep learning practices have been used both to augment and
to replace components of more traditional search-based or
semantics-based algorithms, and these techniques have piqued
interests in both academia and industry, including inside major
companies like Facebook Marginean et al. (2019) and Google
Mesbah et al. (2019). Deep learning solutions are admired for
their generalizability; unlike older methods, they do not require
domain-specific knowledge about programming languages, er-
ror types, or common patches Namavar et al. (2021). Break-It-
Fix-It Yasunaga & Liang (2021), the work we aim to replicate
in this paper, is fundamentally a learning-based approach to
the automatic program repair problem, and displays some of
the flexibility just mentioned, as the original authors apply
their algorithm to correct bugs in both C and Python code.

B. Break-It-Fix-It

In their paper Break-It-Fix-It: Unsupervised Learning for
Program Repair Yasunaga & Liang (2021), Yasunaga and
Liang attempt to address one of the most pervasive problems
in the field of software repair - overfitting. Many of the
currently available automated repair algorithms were trained
on small datasets due to the costly nature of obtaining paired
<bad code, good code> data, which has traditionally
required manual labeling Mesbah et al. (2019). As a result,
these algorithms may fail to find patterns or generalize to
unseen examples Pu et al. (2016). Recognizing the limitations
imposed by a scarcity of true labeled data pairs, previous
authors have augmented their datasets with synthetically gen-
erated pairs, where broken code examples are produced by
applying random or heuristically-guided perturbations to exist-
ing examples of good (i.e. error-free) code Gupta et al. (2017).
However, the distribution of errors in synthetically-generated
bad code often does not align with the distribution of errors
seen in real examples of faulty code. Thus, repair algorithms
trained on these synthetic datasets fail to perform well when
deployed in the real world Yasunaga & Liang (2020).

Yasunaga and Liang address the shortcomings of earlier
synthetic datasets in Break-It-Fix-It (BIFI) by training a
breaker to, given good code, generate realistic examples of
bad code. The synthetic dataset produced by the breaker is
then used to train a software repair algorithm, or fixer. More
specifically, they formulate their task and approach as follows:

Input: An unlabeled dataset of code examples D and a critic
(e.g. a code analyzer or compiler) c such that for x ∈ D:

c(x) =

{
1, x has errors
0, x has no errors.

The critic c can be used to partition D into a set of correct
code snippets and set of erroneous code snippets; that is,



3

D = {Dgood, Dbad}. 1

Goal: Learn a fixer f that takes a code snippet x with
c(x) = 0 and outputs f(x) such that c(f(x)) = 1, while
minimizing the edit distance d(x, f(x)). 2

Approach:
0) [Initialize] Start with a fixer f0 from prior work.
1) [Train] Repeat the following steps for k rounds. Let i

indicate the round number, starting with i = 1.
a) Apply fi−1 to x ∈ Dbad. If c(fi−1(x)) = 1, save

the pair (x, fi−1(x)). Let Di be the dataset of (bad,
corrected) code snippets produced in this step.

b) Train a breaker bi on Di.
c) Apply bi to x ∈ Dgood. If c(bi(x)) = 0, add the

pair (bi(x), x) to Di.
d) Train a fixer fi on Di

2) [Evaluate] Measure the accuracy of fk on a held out
set of real code snippets with errors.

The approach taken in BIFI is similar to the technique of
backtranslation, in which one uses a target-to-source model
to generate noisy sources, and then uses these noisy sources
to train a source-to-target model Lample et al. (2017). BIFI
improves on backtranslation in two primary ways: (i) BIFI
uses the critic to verify that additions to Di in steps 1a
and 1c are actually(xwrong, xcorrect) pairs, whereas this is not
guaranteed in backtranslation (ii) BIFI trains the fixer fi
on pairs of (real erroneous code, synthetic fixed good) in
addition to pairs of (synthetic erroneous code, real good code),
whereas backtranslation only trains the fixer on the latter set
of examples.

Yasunaga and Liang assert that BIFI achieves 71.7% accu-
racy on DeepFix Gupta et al. (2017), a 5.6% improvement
over the current state-of-the-art algorithm, as well as 90.5%
accuracy on Github-Python, a dataset of three million python
code snippets introduced in the original BIFI paper. Our study
aims to replicate their methods and results.

C. Scientific Replication

Generally, in the scientific community, there is a low regard
for scientific replications Lindsay & Ehrenberg (1993). As
researchers often seek out new discoveries, they are inclined to
wonder where the innovation lies in replicating a study exactly
how it was originally conducted. However, if this were the
case, if replications were truly identical to the original study,
all conditions (e.g., time, testing environment) would need to
be the same. Thus, all replications must involve some level of
variation in the conditions. Once we accept that replication
isn’t merely repeating the exact same study, we can take
advantage of the differences in the study conditions and note

1Note: the code snippets in Dgood and Dbad have no relation to each other.
We do NOT have pairs of snippets (xbad, xgood) where xbad is a piece of code
with errors and xgood is a corrected, error-free version of xbad.

2In software repair, we want the fixer f to be semantics-preserving, but
since this is very difficult to check, Yasunaga and Liang use edit distance as
a proxy measure, under the assumption that if the edit distance between two
code snippets is small, they are semantically similar.

that despite these differences, the same results were obtained
Lindsay & Ehrenberg (1993). Replication not only validates
the original findings but establishes an increased range of
conditions for which the findings hold, thereby extending the
scope of the work Lindsay & Ehrenberg (1993); Brooks et al.
(1996).

According to Gómez, Juristo, and Vegas there are five
notable elements in software engineering experimentation that
form the structure of an experiment and may vary in replica-
tion: Site, Experimenters, Apparatus, Operationalizations, and
Population Properties. Site and Experimenters account for the
experiment location and who is conducting the experiment,
respectively Gómez et al. (2010). Apparatus is defined by the
“experimental design, instruments, forms, materials, experi-
mental objects and procedures used to run an experiment”
Gómez et al. (2010). Operationalizations describe the inde-
pendent and dependent variables that are used to measure
the effects of the experimentGómez et al. (2010). Population
Properties refers to the subjects and experimental objects,
where subject properties are subject type and experience and
experimental objects are “specifications, design documents,
source codes, programs or any other artefact related to the
software development” Gómez et al. (2010). We use these el-
ements as a framework to ensure our BIFI replication research
aligns with the scientific method.

III. METHOD

While we are interested in validating the results of the
original study, the goal of our work is to establish an increased
range of different conditions in which the findings of BIFI will
hold. Simply put, we wish to know if it is possible to replicate
the results of BIFI using the same data in a different testing
environment. In seeking to replicate these results, we will
also be evaluating whether the researcher’s repository contains
explicit enough instructions and links to source code that aid
the clear replication of their study. Successful replication of
BIFI will help us to determine if the results can be generalized
and may create new avenues for potential work and innovation.

Literature suggests Lindsay & Ehrenberg (1993) that it
is best to start with closer replications in the initial stages
of replication because the more differentiated ones may not
replicate successfully. Therefore, we first opted to complete
a close replication in which we kept relatively all the known
conditions of the study the same. However, due to issues with
the dependencies we were unable to follow the documented
protocol from the original experimenters Yasunaga & Liang
(2021). Consequently, the replication design pivoted from one
where little variance existed to one that has variance but
follows the overall method of the reference experiment Gómez
et al. (2010).

Overall, we sought to conduct a replication of the BIFI
study to assess the generalizability of the research and the
potential for further use of the self-repair function. While we
came across some dependency issues at first, we were able to
produce results that corresponded to the ones reported in the
BIFI paper by using their trained models. However, based on
the author’s provided documentation, we were unable to train



4

our own models and therefore the scope to which BIFI can
be expanded may be limited. Details are provided in the next
section.

IV. RESULTS

We present the results in two sections. The first covers the
replication of the BIFI Yasunaga & Liang (2021) initial fixer
training. Then, in the second section, we reveal the results
of evaluating the fixer with the models we trained as well
as the trained models Yasunaga and Liang provided as part
of the materials. Along the way, we outline critical findings
and important details that contribute to answer the research
question.

A. Training the BIFI fixer

We followed the steps as outlined in the BIFI GitHub
repository. However, we encountered numerous errors. Some
errors were correctable and we advanced to the next step.
Ultimately, however, some errors were terminal. The details
are as follows.

We cloned the BIFI repository Yasunaga & Liang (2021).
Next, we followed the BIFI environment creation commands
indicated in the repository up to pip install -e. In-
stalling in editable mode produced errors because of a
missing file. We corrected the error by back-tracing to the
most likely version of the fairseq package in Facebook’s
GitHub and manually insert the missing files (Table I) in the
fairseq\data directory. To back-trace, we triangulated the
fairseq release based on the time of BIFI publication, the
BIFI repository last commit timestamp, and the fairseq
version release dates. We were able to build fairseq
successfully after inserting these files from the Facebook
repository into the local BIFI environment.

TABLE I
FAIRSEQ FILE REPLACEMENTS AND THE VERSIONS

Versions
File BIFI Replaced
data utils fast.pyx 0.10.2 0.10.2
token block utils fast..pyx 0.10.2 0.10.2
dictionary.py 0.10.2 0.10.2

Following the install of numpy and editstance, we
downloaded the minimal dataset from the BIFI repository.
We then created the set of round directories per the layout
diagram Yasunaga and Liang provided. However, executing the
python statements from run-round0.sh produced errors.
In this phase of the replication, we encountered import errors
for various fairseq subordinate packages. We traced the
errors to additional missing files in the same directory as
before. At this point, we opted to simply copy the Facebook
\data subdirectory for version 0.10.2 into the BIFI local
environment. While this resolved missing file issues, we then
encountered a series of package import obstacles. Fixing these,
while conceptually possible, would require editing BIFI source
code which we elected to not do given the intended goal and
methodology of this replication.

For completeness, we also tried to implement the BIFI
training procedure in an updated local environment. The
environment reflected a current software stack (i.e., python
3.10.6, fairseq 0.12.2, numpy 1.24.1). This was not successful
due to significant differences between package versions and
the BIFI source code architecture. Therefore, getting the BIFI
system to a working state based on replicating training the
models was not possible with the materials available in the
BIFI GitHub repository.

However, one of the authors (Yasunaga) responded to an
email inquiry regarding the above. The response included a
Docker compose file and a fairseq package build from
March 2020. Upon inspection, we observed six differences
between the Docker compose directives, the BIFI repository
instructions and contents, as well as the details in the original
paper. We indexed all the components and range of versions
(Table II) before attempting further replication of model train-
ing.

TABLE II
BREAKDOWN OF BIFI ENVIRONMENTAL

COMPONENTS

Versions
Component Docker GitHub & Paper
Operating System Ubuntu 16.04 NA1

CUDA 10.1 NA1

cuDNN 7 NA1

miniconda latest NA1

Python 3.7.7 3.7.7
pytorch 1.4.0 1.4.0
torchvision 0.5.0 0.5.0
tqdm 4.53.0 latest
numpy 1.20.1 1.20.1
editdistance latest latest
fairseq2 0.9.x NA1

1
NA: information is not available in the BIFI GitHub
repository materials.

2
Version information had to be inferred from file date
stamps and other file object clues contrasted against
package release history.

We then decided to pursue two model training paths given
the updated BIFI component information. First, we used the
Docker compose file to deploy a container environment as
recommended by Yasunaga. Second, we took the fairseq
package from Yasunaga and overwrote the same directory in
the local GitHub repository clone. In both cases, we injected
the training data as detailed by the authors. Training completed
without error for both the Docker container and the local clone
environments. Further, both training paths yielded models
identical in file size and object metadata to the trained models
provided in the BIFI repository.

B. Evaluating the BIFI fixer

We were able to run the BIFI fixer evaluation without error
using all three trained models. We used the full data download
from the BIFI repository. Then, we ran Yasunaga and Liang’s
final BIFI evaluation step against the models trained in our
Docker and local repository clone environment. More specifi-
cally, we ran the python src/c005__eval_fixer.py
routine using the --round_name round2-BIFI-part2



5

option. Our intent was to replicate Yasunaga and Liang’s
round-2 accuracy in Total (90.5%), for Unbalanced Parenthe-
ses (94.2%), Indentation Error (85.9%), and Invalid Syntax
(93.5%). The results from our replication trials are as follows
(Table III).

TABLE III
REPLICATION RESULTS

Accuracy
Category Docker Local Yasunaga & Liang (2021)
Total 90.5% 90.5% 90.5%
Unbalanced Parentheses 94.2% 94.2% 94.2%
Indentation Error 85.9% 85.9% 85.9%
Invalid Syntax 93.5% 93.5% 93.5%

Considering the outcomes of this replication, we reached
several conclusions. These are discussed in the next and final
section of this work. We also detail where our assumptions and
limitations differ from those offered by Yasunaga and Liang.
As well, as a replication of existing work, we have unique
recommendations and ideas for future research in software
self-repair. In any case, we begin by offering a brief summary
as a grounding mechanism for conceptualizing our results
specifically and software self-repair in general.

V. CONCLUSION

Today, software developers spend upwards of 50% of their
time finding and patching bugs and vulnerabilities Britton
et al. (2013); Alhefdhi et al. (2020). Automated software
repair Harman (2010); Le Goues et al. (2013) is intended to
reduce or eliminate such a labor burden, thus freeing trapped
development capacity. One current attempt at self-repair was
Yasunaga and Liang’s Break-It-Fix-It (BIFI) Yasunaga &
Liang (2021). The authors demonstrated a self-repair function
capable of repairing errors with greater than 90% accuracy.
However, Yasunaga and Liang specifically recommend future
work explore to what extent BIFI generalizes to other domains.
Echoing such a sentiment, Xia et al. Xia et al. (2022) noted
existing literature, and the demonstrated self-repair paradigms
therein, may have limited generalizability.

For that reason, the purpose of this work was to conduct
a rigorous, scientific replication of BIFI. We were largely
successful in this effort, with one major caveat. On one hand,
our replication succeeded in validating the BIFI evaluation
results using just the code, documentation, and pre-trained
models available in the BIFI repository published by the
authors. We take such an outcome as one step completed
towards assessing the generalizability of software self-repair
in general and BIFI in specific. On the other hand, we were
initially unable to replicate the model training protocol for
BIFI due to missing files and package import errors in the
public version of the code. These issues were only resolved
once we contacted the BIFI authors and received a copy of the
Docker compose file used to generate the environment used
in their experiments. Using this compose file, we were able to
construct a viable model training environment and build the
models using directions in the BIFI repository 3.

3We did not receive permission to share the Docker compose file.

Though we eventually succeeded in training the BIFI model,
and achieved the same performance the authors claim, the
successful implementation of BIFI used significantly outdated
versions of Python, numpy and fairseq. Furthermore, attempts
to reimplement BIFI with updated versions of these packages
proved fruitless. Based on this result, we surmise BIFI is not
actively maintained in the software engineering sense. The last
repository commit was on August 31, 2021. The technology
stack (i.e., Python, fairseq, and so forth) have evolved since
that commit and without the Docker compose file it is not
possible to use BIFI independent of its pre-trained models.

A. Assumptions and Limitations

Of course, we have assumed the GitHub repository provided
by Yasunaga and Liang Yasunaga & Liang (2021) contains
the correct codebase and training data. The assumption is
reasonable because the commit history is aligned with the
publication date. Further, a thorough search did not uncover
any additional code repositories. We also assume the errors
encountered during the BIFI training procedure are unresolv-
able given publicly available documentation on BIFI. While it
might be possible to engineer a Python environment suitable
for BIFI training, the source paper lacks complete information
particularly as it relates to the fairseq package, and the Docker
compose file we used to resolve issues with fairseq is not
published at this time. Therefore, potential resolutions for
the errors are limited. On a related point, we recognize
the limitation of our results in establishing generalizability
for BIFI. Achieving identical results, while positive, do not
fully establish external, general application of the automatic
software self-repair tool.

B. Recommendations

Given the challenges that emerged during the replication
effort, it is important that researchers consider the pace at
which technology evolves. Research that provides clear, exe-
cutable documentation and timeless code will help to ensure
that future technology can build on existing work. Therefore,
our BIFI replication work should be extended to explore the
technology debt (tech debt) that exists in current research.
Briefly, tech debt speaks to the measurable value associated
with short term technology design or implementation decisions
in exchange for increased maintenance costs long term. At
an extreme, tech debt is highest when no maintenance takes
place or technology is developed and abandoned. Thus, if the
aim of self-repair functions is to alleviate the time spent by
developers on identifying and patching bugs, we must first
look at the sustainability of the research in this area.

A first step to doing this would be to find the percentage
of relevant papers (with code) that are in a tech debt state.
From here, future work should explore which of this work
has been updated and if the patches stay true to the original
functionality of the code. Similar to the Docker file shared by
Yansunaga, practitioners and researchers alike should consider
using a container environment to better preserve their work
and increase the likelihood of successful replication. Utilizing
a container environment enables developers to share code and



6

its dependencies with others, thereby reducing the potential
for errors and hopefully slowing down the pace at which
the research enters a state of technical debt. On this note, it
may be worthwhile to examine how many self-repair function
papers utilize micro-server architectures. Once we have an
understanding for the ubiquity of tech debt in recent self-repair
work, it can be extended into future research such as self-repair
functions that automatically review code and are built into the
memory environment of the workspace. Such innovation will
only evolve if we write code with tomorrow in mind so that
our systems of today can be used in the future. Finally, it may
be of value to the field if future work is able to reproduce the
BIFI accuracy measures using an updated technology stack.
Doing so will invariably require changes to the BIFI source
code but will add to the body of evidence for generalizability
of the self-repair function.

REFERENCES

Abuasad, A., & Alsmadi, I. M. (2012). Evaluating the
correlation between software defect and design coupling
metrics. In 2012 international conference on computer,
information and telecommunication systems (cits) (pp. 1–
5).

Alhefdhi, A., Dam, H. K., Le, X.-B. D., & Ghose, A. (2020).
Adversarial patch generation for automatic program repair.
arXiv preprint arXiv:2012.11060.

Alves, H., Fonseca, B., & Antunes, N. (2016). Software
metrics and security vulnerabilities: dataset and exploratory
study. In 2016 12th european dependable computing con-
ference (edcc) (pp. 37–44).

Britton, T., Jeng, L., Carver, G., & Cheak, P. (2013). Re-
versible debugging software “quantify the time and cost
saved using reversible debuggers”. University Cambridge:
Cambridge, UK.

Brooks, A., Daly, J., Miller, J., Roper, M., & Wood, M.
(1996). Replication of experimental results in software
engineering. International Software Engineering Research
Network (ISERN) Technical Report ISERN-96-10, Univer-
sity of Strathclyde, 2.

Ding, Z. Y., Lyu, Y., Timperley, C., & Le Goues, C. (2019).
Leveraging program invariants to promote population di-
versity in search-based automatic program repair. In 2019
ieee/acm international workshop on genetic improvement
(gi) (p. 2-9). doi: 10.1109/GI.2019.00011

Gómez, O. S., Juristo, N., & Vegas, S. (2010). Replications
types in experimental disciplines. In Proceedings of the
2010 acm-ieee international symposium on empirical soft-
ware engineering and measurement (pp. 1–10).

Gupta, R., Pal, S., Kanade, A., & Shevade, S. (2017,
Feb.). Deepfix: Fixing common c language errors
by deep learning. Proceedings of the AAAI Con-
ference on Artificial Intelligence, 31(1). Retrieved
from https://ojs.aaai.org/index.php/AAAI/
article/view/10742 doi: 10.1609/aaai.v31i1.10742

Harman, M. (2010). Automated patching techniques: the fix
is in: technical perspective. Communications of the ACM,
53(5), 108–108.

Lample, G., Conneau, A., Denoyer, L., & Ranzato, M. (2017).
Unsupervised machine translation using monolingual cor-
pora only. arXiv. Retrieved from https://arxiv.org/
abs/1711.00043 doi: 10.48550/ARXIV.1711.00043

Le, X.-B. D., Thung, F., Lo, D., & Goues, C. L. (2018). Over-
fitting in semantics-based automated program repair. In Pro-
ceedings of the 40th international conference on software
engineering (p. 163). New York, NY, USA: Association
for Computing Machinery. Retrieved from https://doi
.org/10.1145/3180155.3182536 doi: 10.1145/
3180155.3182536

Le Goues, C., Forrest, S., & Weimer, W. (2013). Current
challenges in automatic software repair. Software quality
journal, 21(3), 421–443.

Le Goues, C., Nguyen, T., Forrest, S., & Weimer, W. (2012).
Genprog: A generic method for automatic software repair.
IEEE Transactions on Software Engineering, 38(1), 54-72.
doi: 10.1109/TSE.2011.104

Lindsay, R. M., & Ehrenberg, A. S. (1993). The design of
replicated studies. The American Statistician, 47(3), 217–
228.

Liu, K., Koyuncu, A., Kim, K., Kim, D., & F. Bissyandé,
T. (2018). Lsrepair: Live search of fix ingredients for
automated program repair. In 2018 25th asia-pacific soft-
ware engineering conference (apsec) (p. 658-662). doi:
10.1109/APSEC.2018.00085

Marginean, A., Bader, J., Chandra, S., Harman, M., Jia, Y.,
Mao, K., . . . Scott, A. (2019). Sapfix: Automated end-
to-end repair at scale. In 2019 ieee/acm 41st international
conference on software engineering: Software engineering
in practice (icse-seip) (p. 269-278). doi: 10.1109/ICSE
-SEIP.2019.00039

McGuire, M. (2022, Dec). What is the cost of poor software
quality in the u.s.? https://www.synopsys.com/
blogs/software-security/poor-software
-quality-costs-us/. (Accessed: 11-01-2023)

Mechtaev, S., Yi, J., & Roychoudhury, A. (2016a). Angelix:
Scalable multiline program patch synthesis via symbolic
analysis. In Proceedings of the 38th international confer-
ence on software engineering (pp. 691–701).

Mechtaev, S., Yi, J., & Roychoudhury, A. (2016b). Angelix:
Scalable multiline program patch synthesis via symbolic
analysis. In 2016 ieee/acm 38th international conference
on software engineering (icse) (p. 691-701). doi: 10.1145/
2884781.2884807

Mehne, B., Yoshida, H., Prasad, M. R., Sen, K., Gopinath,
D., & Khurshid, S. (2018). Accelerating search-based
program repair. 2018 IEEE 11th International Conference
on Software Testing, Verification and Validation (ICST),
227-238.

Mesbah, A., Rice, A., Johnston, E., Glorioso, N., & Aftandil-
ian, E. (2019). Deepdelta: Learning to repair compilation
errors. In Proceedings of the 2019 27th acm joint meeting on
european software engineering conference and symposium
on the foundations of software engineering (p. 925–936).
New York, NY, USA: Association for Computing Ma-
chinery. Retrieved from https://doi.org/10.1145/
3338906.3340455 doi: 10.1145/3338906.3340455

https://ojs.aaai.org/index.php/AAAI/article/view/10742
https://ojs.aaai.org/index.php/AAAI/article/view/10742
https://arxiv.org/abs/1711.00043
https://arxiv.org/abs/1711.00043
https://doi.org/10.1145/3180155.3182536
https://doi.org/10.1145/3180155.3182536
https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-us/
https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-us/
https://www.synopsys.com/blogs/software-security/poor-software-quality-costs-us/
https://doi.org/10.1145/3338906.3340455
https://doi.org/10.1145/3338906.3340455


7

Misra, S. C., & Bhavsar, V. C. (2003). Relationships between
selected software measures and latent bug-density: Guide-
lines for improving quality. In International conference on
computational science and its applications (pp. 724–732).

Namavar, M., Nashid, N., & Mesbah, A. (2021). A controlled
experiment of different code representations for learning-
based bug repair. arXiv. Retrieved from https://arxiv
.org/abs/2110.14081 doi: 10.48550/ARXIV.2110
.14081

Nguyen, H. D. T., Qi, D., Roychoudhury, A., & Chandra, S.
(2013). Semfix: Program repair via semantic analysis. In
2013 35th international conference on software engineering
(icse) (p. 772-781). doi: 10.1109/ICSE.2013.6606623

Plesser, H. E. (2018). Reproducibility vs. replicability:
a brief history of a confused terminology. Frontiers in
neuroinformatics, 11, 76.

Pu, Y., Narasimhan, K., Solar-Lezama, A., & Barzilay, R.
(2016). sk p: a neural program corrector for moocs.
arXiv. Retrieved from https://arxiv.org/abs/
1607.02902 doi: 10.48550/ARXIV.1607.02902

Qi, Y., Mao, X., Lei, Y., Dai, Z., & Wang, C. (2014).
The strength of random search on automated program
repair. In Proceedings of the 36th international confer-
ence on software engineering (p. 254–265). New York,
NY, USA: Association for Computing Machinery. Re-
trieved from https://doi.org/10.1145/2568225
.2568254 doi: 10.1145/2568225.2568254

Tufano, M., Pantiuchina, J., Watson, C., Bavota, G., & Poshy-
vanyk, D. (2019). On learning meaningful code changes
via neural machine translation. In 2019 ieee/acm 41st
international conference on software engineering (icse) (pp.
25–36).

Xia, C. S., Wei, Y., & Zhang, L. (2022). Practical program
repair in the era of large pre-trained language models. arXiv
preprint arXiv:2210.14179.

Yasunaga, M., & Liang, P. (2020). Graph-based,
self-supervised program repair from diagnostic feedback.
arXiv. Retrieved from https://arxiv.org/abs/
2005.10636 doi: 10.48550/ARXIV.2005.10636

Yasunaga, M., & Liang, P. (2021). Break-it-fix-it: Un-
supervised learning for program repair. In International
conference on machine learning (pp. 11941–11952).

https://arxiv.org/abs/2110.14081
https://arxiv.org/abs/2110.14081
https://arxiv.org/abs/1607.02902
https://arxiv.org/abs/1607.02902
https://doi.org/10.1145/2568225.2568254
https://doi.org/10.1145/2568225.2568254
https://arxiv.org/abs/2005.10636
https://arxiv.org/abs/2005.10636

	Introduction
	Background
	Automated Software Repair
	Search-Based
	Semantics-Based
	Learning-Based

	Break-It-Fix-It
	Scientific Replication

	Method
	Results
	Training the BIFI fixer
	Evaluating the BIFI fixer

	Conclusion
	Assumptions and Limitations
	Recommendations


